

SUPPORTING THE IBM FILE SYSTEM IN NSW
November 20, 1980 -- Document TR-23

SUPPORTING THE IBM FILE SYSTEM IN NSW

by
Neil Ludlam
Steve Farrell
Robert Braden

November 20, 1980

Document TR-23

UCLA Office of Academic Computing
5628 Math Sciences Addition

University of California C0012
Los Angeles, California 90024

This work was sponsored by
the Advanced Research Projects Agency

of the Department of Defense,
under RPA Order no. 2543, Accesion For

Contract No. MDA 903-74-C-0083: NTIS CRA&I

ARPANET COMPUTER SERVICES IN SUPPORT OF DTIC TAB
THE NATIONAL SOFTWARE WORKS Ur:eo: d 0

Jlst f; . ri

June 1, 1975 - February 29, 1980 .By

William B. Kehl, Principal Investigator
(213) 825-7511

SEMI-ANNUAL TECHNICAL REPORTS DIt ' | Jr
for period of i

January 1, 1978 - December 31, 1978 ,jj

The views and conclusions contained in this document are those of the
authors, and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or of the United States Government.

I
SUPPORTING THE IBM FILE SYSTEM IN NSW
November 20, 1980 -- Part I: Summary

PAGE 1

.REPO
RT SU .,MA1RY

P G

This report covers technical development at UCLA relating to theS National Software Works (NWg) during 1978. It is a combination of the

two Semi-annual Technical Reports covering the periods of January 1
through June 30 and July 1 through December 31 of 1978.

The primary goal of the NSW project at UCLA is to make the IBM Operating
System OS/MVT, and specifically its implementation on the UCLA IBM
360/91, a "tool-bearing host" within the NSW. This report is
specifically concerned with the design and implementation of the NSW
File Package component under OS/MVT. The next three sections of the
report correspond to specific documents stored in the NSW documentation
repository maintained by the NSW Operations Contractor, so each section
has been made self-contained. For example, each section has its own
table of contents and reference summary, and each section is
independently paginated. .,

Part II: FP/360 -- The NSW MYT File Package

This section describes FP/360, the File Package implementation for
OS/MVT, from the aspect of its use as an NSW core-system
component. It does not go into program logic to any depth.

Part III: The NSW Basic Copy Machine

This section describes that subcomponent of FP/360 called the
"Basic Copy Machine", or BCH. The BCH can be viewed as a
separable piece of software that performs a generalized data copy
operation according to parameters set up and pre-validated by the
File Package proper. The separation of function is not complete,
particularly in the area of Network interface. Nevertheless, it
serves the purpose of breaking the rather massive File Package
down into two more easily described parts.

Part IV: UCLA Reccommendations on Libraries in NSW

This section presents UCsA's observations and reccommendations on
a fundamental problem that must be solved before NSW can
adequately support the use of IBM-compatible software tools. The
NSW file system, and thus FP/360, supports only sequential files,
while most IBM program-development tools make generous use of
"partitioned", or library, files. So under present
specifications, FP/360 is not capable of supporting IBM tools in
NSW.

iU

SupportinS the IBM File System in NSW

November 20, 1980 -- Part II: FF1360

PART I II

FF/360 -- THE NSW MYT FILE PACKAGE

This section is separately available
as UCLA document UCNSW-204

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

TABLE OF CONTENTS

2. PART II: FP/360 1
2.1. FP/360 FUNCTIONAL SPECIFICATIONS 1
2.1.1. OVERVIEW. 2
2.1.2. PARAMETRIC DATA STRUCTURES 4
2.1.2.1. PCD -- PHYSICAL COPY DESCRIPTOR 4
2.1.2.2. PASSWORD 6
2.1.2.3. Grr -- GLOBAL FILE TYPE 6
2.1.2.4. GFD -- GLOBAL FILE DESCRIPTOR 6
2.1.3. PROCEDURE CALLS SUPPORTED 8
2.1.3.1. TRANSPORT 8
2.1.3.2. IMPORT 9
2.1.3.3. EXPORT 10
2.1.3.4. SENDME 12
2.1.3.5. DELETE 14
2.1.3.6. ANALYZE 15
2.1.4. NSW FILE ATTRIBUTES 16
2.1.4.1. GLOBAL FILE ATTRIBUTES 16
2.1.4.1.1. CLASS 18
2.1.4.1.2. KEY DEFINITIONS 18
2.1.4.1.3. VARIABLE FORMAT EFFECTORS 18
2.1.4.1.4. DIMENSIONALITY 21
2.1.4.1.5. BYTESIZE 23
2.1.4.2. LOCAL FILE ATTRIBUTES 24
2.1.4.3. PHYSICAL STORAGE ATTRIBUTES 26
2.1.5. MAPPING FILES ON A 360 27
2.1.6. CONVERSIONS IN FP/360 28
2.1.6.1. TRANSLATABILITY 28
2.1.6.2. DIMENSIONAL CONVERSION 29
2.1.6.3. CASE CONVERSION 30
2.1.6.4. TRUNCATION AND PADDING 30
2.1.6.5. FORMAT EFFECTOR EXPANSION 31
2.2. FP/36OPROGRAM LOGIC 32
2.3. APPENDIX A: STATUS OF FF/360 IMPLEMENTATION 34
2.3.1. CURRENT RESTRICTIONS AND DEFERRED FEATURES 3
2.3.2. FP SPECIFICATIONS QUESTIONS 37
2.3.3. DESION POINTS 39
2.4. APPENDIX B: 360 FAMILY CONVENTIONS 40
2.5. APPENDIX C: VERSION 2 INITIALIZATION PARAMETERS 41
2.6. APPENDIX D: IL GRAMMAR 43
REFERENCES 46

Supporting the IBM File System in N~SW
November 20, 1980 -- Part II: FP/360

ILLSTRATIONS

Figure 1. Classification of Format Effectors.... 20
figure 2. FF1360 Structure..... 33

I
LM-

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 1

2. PART II: FP/360

2.1. FP/360 FUNCTIONAL SPECIFICATIONS

Within the National Software Works (NSW), each Tool-bearing host (TBH)
is required to have a software component called a "File Package" or
"9P", for moving and converting files. This document describes
FP/360, a File Package implementation for the IBM 360. Specifically,
FP/360 was developed to operate on the UCLA IBM System/360 model 91KK
under the MVT Operating System with the Time-Sharing Option, TSO (we
commonly refer to this system as OS/MVT). However, with the
replacement of certain installation - dependent modules, it will
operate on any upward - compatible system.

The reader is assumed to be familiar with reference 1, which
prescribes the operation and protocols of an NSW File Package, and
with the software environment provided by the NSW.

FP/360 communicates with other NSW processes via the NSW Network
Transaction Protocol, or NTP (reference 2, appendix 3), On an IBM
system, NTP is implemented on three levels:

* The procedure-call level is implemented by the PL/PCP subroutine
package (reference 3).

* The MSG message and direct-connection level is implemented by the

PL/MSG subroutine package (reference 4), which also uses the PLOXI
package (reference 7).

" The NSWB8 data encodement level is handled by the PL/B8 subroutine
package (reference 5).

This document describes in particular Version 2 of the FP/360
implementation.

'1

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 2

2.1.1. OVERVIEW

FP/360 functions as an NSW core-system process with generic name
'FLPG". It is essentially a file-copying machine responding to a
well-defined set of procedure calls in a well-defined way. Each
operation which can be performed by FP/360 is invoked by a single
NTP transaction of the form: Generic-request/Specific-reply. Such
a transaction, a "procedure call" on an FP procedure, can be
expressed in the form:

procedurename (argument-list) -> (result-list)

In particular, FP/360 can execute a procedure call from these remote
processes:

2.1.1.1. From a remote process of class 'WM" (Works Manager) or "WMO"
(Works Manager Operator) FP/360 can execute a call to one of these
procedure names:

* FP-EXP (the "Export" procedure call)

* FP-IMP (the "Import" procedure call)

* FP-TRANS (the "Transport" procedure call)

These three procedures, collectively called the "GET procedures",
are all concerned with producing a local disk data set filled with
the data records of a given file. The source may be either a
local data set or a remote FP, i.e., an FP on another host. To
retrieve a file across the ARPANET, the local FP contacts an FP
instance on the donor host by issuing a subsidiary (FP-SENDHE)
procedure call for the latter. The two FP's then open a binary
simplex connection to pass the data.

The source data may be encoded in IL (Intermediate Language, see
Appendix D) or it may be in "clear text", i.e., in one of the many
standard disk formats supported by the local operating system,
OS/HVT. The output data set is to have specified well-defined •
local file attributes, but the input data may or may not carry
these or compatible attributes. The GET procedures are the most
complex parts of FP/360, as the full range of data conversions may
be needed.

2.1.1.2. From a remote process of class "CKXPTR" (Checkpointer), "N", or
"WHO", FP/360 can execute a call to the procedure name:

* FP-DEL (the "Delete" procedure call)

.4

I I r , -. 4

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 3

This procedure deletes a physical copy from the local disk space
(which implies removing its name from the local file directory
mechanism).

2.1.1.3. From a remote process of class "FLPKG" (another File Package)

FP/360 can execute a call to the procedure name:

* FP-SENDHE (the "Sendlle" procedure call)

This procedure copies a file from a local disk data set to a
remote FP through a binary direct connection. The data will be
encoded into IL, and all local file-type dependencies will be
stripped from the data; however, no real data conversion is
required.

2.1.1.4. The following call is defined, but is not presently used by any
NSW process; it is a no-operation in FP/360:

* FP-ANAL (the "Analyze" procedure call)

Later sections will describe each of these operations, with their
parameters and results. If any argument list contains more
arguments than are known to the selected executor, the excess is
discarded without comment. If extensions are defined in an
upward-compatible way, this feature will prove useful.

When it is started, FP/360 materializes as an HSG process and issues
a ReceiveGeneric for a generic class determined by an initialization
procedure (normally "FLPKG"). When the receive completes, FP/360
processes the request for its caller. For a GET call, the local FP
may iu turn issue a Sende call to a remote FP. While processing a
call, FP/360 is not enabled for new generic calls, and will reject
any specifically addressed messages from any process other than its
caller or its current callee, by sending an NTP reply with null
results and a standard rejection error descriptor.

When it has completed processing, FP/360 returns an NTP reply
message to the original caller, and then rematerializes as a new
process instance, thus becoming once again receptive to generic
calls. It continues to recycle in this manner until a fixed count
of cycles, included in the initialization parameters, is exceeded.

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 4

2.1.2. PARAMETRIC DATA STRUCTURES

Every call on an FP procedure includes a set of parameters encoded
in an NSWB8 LIST (reference 5). While the parameter structure of
the call is peculiar to its procedure, many of the elements of that
structure are commonly defined. This section gives FP/360's
interpretation of these common elements.

2.1.2.1. PCD -- PHYSICAL COPY DESCRIPTOR

For each physical copy of an NSW file, the Works Manager keeps a

"Physical Copy Descriptor" (PCD) in its file catalog. A PCD is
used by FP/360 in one of four different ways:

1) The Works Manager passes FP/360 a PCD as the definition of
the location and IL-encodement of an existing physical copy
of an NSW file, or an existing data set outside NSW file
space.

2) The Works Manager passes FP/360 a partially filled PCD to
identify the directory and/or name under which a new data
set is to be created; this is called a "skeleton PCD".

3) FP/360 passes the Works Manager a PCD to define the location
and IL-encodement of a newly created data set.

4) FP/360 passes the Works Manager a null PCD as notice that a
data set was not created (a null PCD consists of a NSWB8

LIST of count 0).U

FP/interprets the fields of the PCD as follows:

* HOST

The HOST field is an NSW host number. This field is only ofU
interest when the PCD is being used to locate an existing data
set. FP/360 uses a PL/MSG function (reference 3) to classify

14 the host as LOCAL, FAMILY, or FOREIGN. If HOST is not LOCAL,
then only two interpretations of PCD data are possible: 1) the
host number can be used in a Sende call to another File

Package; and 2) the ILFLAG field (see below) can be examined.U* DIRECTORY

The DIRECTORY field for a local data set is always chosen by
some process on the local host, and it is generally an
uninterpretable character string for remote FP's. When the WM
calls FP/360 to make a tool copy of a file, the call includes
the tool-workspace directory chosen by the local Foreman. In
other cases of making a local copy, the local FP should be
allowed to choose the directory, so the PCD DIRECTORY field

@1U
IMENIQ=

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 5

should be null.

For a local 360 file, DIRECTORY contains that part of the local
data set name that corresponds to an MVT/TSO LOGON directory.
The interpretation of a TSO LOGON directory may vary from one
360 installation to another. At UCLA, the DIRECTORY Field will
contain a character string of the form "cccccc.uuu", where
"cccccc" is a CCN charge number and "uuu" is the TSO "userid".

LOGON directories with the same account number form a "group",
and the directory used to run a job can have group-wide access.
Version 2 of FP/360 will have no mechanism to access files
outside the directory group in which it was started.
Fortunately, it is anticipated that all NSW-related file
directories will be in the same group.

If a skeleton PCD has a null DIRECTORY field or is completely
null, then FP/360 will use one of, two default directories
specified by the initialization parameters: NSW filespace
default, or non-NSW filespace default.

*NAME

The NAME field contains that part of the loca file name (called
a "data set name" in MVT) that is not contained in DIRECTORY.
An KWT data set name (DSNAME) is formed by catenating these two
fields with a period between them.

FP/360 will accept "wild" characters (question marks) in a NAME
field, and will generate pseudo-random substitutions to create a
unique local name. If a PCD which is required to specify the
name for creating a new data set contains a null NAME string, or
is entirely null, FP/360 will use a default name from its
initialization parameters. Again, there are two defaults, one
for NSW and one for non-NSW file space. The default names will
generally contain wild characters.

* PHYS

The PHYS field is never examined by FP/360 (see the section
entitled "NSW FILE ATTRIBUTES", below). In PCD's generated by
FP/360, it will be a character string of count 0.
*ILFLAG -

The ILFLAG field is a Boolean value which means "this data set
is already physically encoded in IL". FP/360 will use this
datum when ranking a set of donor file candidates in a GET
procedure.

mU

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 6

When the PCD is defining a new data set to the Works Manager,
this is the only place where IL-encodement is recorded.
Consequently, when the PCD is for an existing data set on the
LOCAL host, this datum is the only one that can tell FP/360
whether the data is already IL-encoded.

2.1.2.2. PASSWORD

The NSW PASSWORD parameter is treated differently depending on the
corresponding data set's location:

* If the data set is not on the local host, then the
interpretation of the password is the responsibility of another
File Package. If FP/360 issues a SendMe call to that File
Package, the password used in that call will be a copy of the
one that FP/360 received from the Works Manager.

* If the data set is locally resident, then the password is
intended for gaining access to the specified local directory.
However, as noted previously, Version 2 does not allow access to
directories which would require passwords (i.e., those in a
group different from the one in which FP/360 is running), so the
password is ignored.

2.1.2.3. GFT -- GLOBAL FILE TYPE

The NSW Global File Type (GFT) is the symbolic name for a
particular set of file attributes. It has the form:

'<host family>-<file type>'

When <host family> is '360', the GFT is said to be "native" to an
IBM 360 and hence to FP/360. The File Package on each host family
must know all the attributes associated with every native GFT;
however, it need not (and must not) assume anything about the
attributes associated with a non-native GFT.

In particular, FP/360 includes a table containing the Global File
Attributes (GFA's), Local File Attributes (LFA's) and default
Physical Structure Attributes (PSA's) for every native GFT. If a
native GFT passed to FP/360 does not appear in this table, then a
system inconsistency exists, and appropriate local error logging
will occur.

2.1.2.4. GFD -- GLOBAL FILE DESCRIPTOR

The NSW Global File Descriptor (GFO) is used by FP/360 to define
the Global File Attributes (GFA's) of an NSW file with a
non-native file type. Thus, when FP/360 receives a GFT from the
Works Manager, there are two cases:

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: F/360

PAGE 7

* If the GFT does not begin with the characters "360-" then it is
a non-native type. The accompanying GFD explicitly lists the
GFA's of the file. The LFA's are unknown and irrelevant in this

* If the GET does begin with the characters "360-" then it is a
native GFD and the accompanying GFD can be ignored; the GFA'sLFA's, and default PSA's for that GFT are taken from the local
table.

The contents of the GFD are covered in a later section entitled
NSW FILE ATTRIBUTES.

.............

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 8

2.1.3. PROCEDURE CALLS SUPPORTED

2.1.3.1. TRANSPORT

The Transport procedure copies a local or remote file into a local
disk data set, converting the data to specified target attributes.
In the NSW context, the Transport procedure should be used only
with source and target files outside the NSW filespace; however,
FP/360 can make no check an this.

The form of the Transport procedure call is:

FP-TRANS (input PCD,
input PASSWORD,
input GFT,
input GFD,

output PCD,
output PASSWORD,
output GFT,
output GFD)

->)

This call creates a local copy of a local or remote file, using a
name determined from the DIRECTORY and NAME fields of "output
PCD". Since the actual name used is not returned to the caller,
"output PCD" should include a fully specified name. If this name
is a duplicate, FP/360 will delete the old copy.

If "input PCD" specifies a remote host, Transport will issue a
SendMe call to the FP on that host to retrieve the file.

The operation may fail if it is not possible to translate from the
attributes implied by "input GFT" and "input GFD" to those of
0output FT".

Transport returns no reply except the usual completion mode (REPLY
vs. ERROR).

Version 2 restriction: the target file, and the source file if
local, must be in the NSW directory group.

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 9

2.1.3.2. IMPORT

The Import procedure makes an exact copy of a local or remote file
into a local disk data set in the NSW filespace directory. No
data type conversion is performed; the output file is assumed to
have the same GFT (and GFD) as the input file. The form of the
Import procedure call is:

FP-IMP (input PCD,
input Password
input GFT,
input GFD,
output file identifier,
delete switch)

-> (output PCD)

If "input PCD" specifies a remote host, Import will issue a SendMe
call to the FP on that host to retrieve the file. The output will
be encoded in IL if the input is a local file in IL or if it is
received from a remote host in IL (Note: It is presently planned
to use IL for cross-network transfer of all files, even within the
360/370 family).

If the copy is completed successfully, FP/360 returns an "output
PCD" which describes the new data set. In particular, Import
takes the DIRECTORY from, and generates a random NAME from, the
NSW-filespace default fields of the initialization parameters.

The "output file identifier" is always ignored.

The Boolean parameter "delete switch", if true, specifies that the
input file is to be deleted after a successful copy. This option
may be set only for a local input file, in which case FP/360 will
attempt to implement the procedure as a data set rename. No data
movement will occur, and "output PCD" will be a copy of "input
PCD" with new values for the directory and name.

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 10

2.1.3.3. EXPORT

The Export procedure, like Transport, makes a local copy of a
local or remote file, with data type conversion. However, the
Export procedure has three additional options, discussed below.

FP-EXP (LIST (input PCD candidates),
input GFT,
input GFD,
output PCD skeleton,
output PASSWORD,
LIST (output GFT candidates),
write secondary output switch,
output FILE IDENTIFIER)

-> (output PCD,
secondary output PCD,
output GFT)

The "output PCD skeleton" will usually contain a non-null
DIRECTORY. The NAME field may contain either a fully specified
name or wild characters to be replaced in such a way as to create
a unique name. If a fully specified name matches an existing data
set, then FP/360 will delete the existing copy. If no NAME is
specified, the NAME default for non-NSW filespace will be used.
Similarly, if DIRECTORY is not specified, a default non-NSW
directory will be taken from the initialization parameters.

The three additional options of Export are:

1) Export chooses the input file from "input PCD candidates".
It will order this list of input candidates by estimated
ease of copy, using this simple preference definition:

1) a local data set not encoded in IL.
2) a local data set encoded in IL.
3) a remote data set encoded in IL.
4) a remote data set not encoded in IL.

Having formed this sorted list of input PCD's, FP/360 loops
down the list and attempts to copy each in turn, until
either: 1) a successful copy is produced; 2) the lilst is
exhausted; or 3) the number of attempts exceeds a limiting
value acquired a an FP/360 initialization parameter.

Setting that parameter to 1 effectively disables retry.

2) From "output GFT candidates", Export must choose a single
GFT for its primary output. -I

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 11

* If the list of output GFT candidates is empty, then the

input GFT will be used.

* If the input GFT appears in the list of output GFT
candidates, it will always be selected.

* Otherwise, the lilst of candidates is sorted into order of
increasing cost of conversion, while preserving the
original order in cases of equal cost (the list was
originally ordered by the caller's preference). The
algorithm for this sort is described in the section
entitled "CONVERSIONS IN FP/360". The first OFT on the
sorted list is selected.

* It is possible that none of the conversions from the input
GFT to any of the output GFT's are possible. In this
case, the entire Export operation is failed.

3) Export can create a secondary output file in the same format
and with the same type as the input.

If "write secondary output switch" is true, FP/360 is
requested to create a secondary copy. However, Export has
the privilege of refusing to do so if the copy would be
redundant, due to the existence of a local data set among
the input PCD candidates. Refusal is indicated by returning
a null "secondary output PCD" to the Works Manager.

Otherwise, Export will create a data set containing the
records exactly as they are received from the donor file
package. The name for the secondary output data set is
always generated by FP/360 using the same mechanism
described earlier for naming the result of the Import
procedure, but using the NSW filespace defaults in the
initialization parameters.

Version 2 restriction: the entire Export procedure will fail if
any unrecoverable error occurs, even one not preventing producing
the primary output data set.

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 12

2.1.3.4. SENDtE

The Send}e procedure copies a file from a local disk data set to a
remote FP through a binary direct connection. The data will be be
encoded into NSV Intermediate Language (IL), and all local
file-type dependencies will be stripped from it. However, no data

type conversion is performed -- the output GFT is identical to the
input GY'r.

The form of the Send~e procedure call is:

FP-SENDME (input PCD,
input PASSWORD,
input GFT,
input GFD,
receiver host number,
maximum byte size,
maximum block size,
family argument)

-> (connection identifier,
actual byte size,
actual block size,
file size,
family reply)

The "input GFD" is actually redundant. Either the data to be
transmitted is of a native type, in which case its attributes are
known, or it is in IL, in which case no attributed will need to be
known to transmit it. So this datum is effectively ignored.

The actual block size will be the minimum of: 1) the requested
maximum block size; and 2) a limiting value acquired as an FP/360
initialization parameter. At present, transmission block sizes
are established by Gentlemen's agreement, and will not vary.
Therefore, if the input is IL-encoded, and if one of its
pre-formatted IL transmission blocks exceeds this block size, the
procedure will be aborted.

The "file size" result will be the bit size of the actual disk
allocation on the local disk, adjusted, if the data set is not
already in IL, by its LFD's "compression factor" attribute.

Version 2 restrictions:

* The receiver host number is already known, so the corresponding

parameter is ignored. U

Supporting the IBM File System in NSW

November 20, 1980 -- Part II: FP/360
PAGE 13

" "Connection identifier" is always 1.

" "Actual byte size" is always 8.

* Non-IL transmission is not supported: therefore, "family

" SendMe cannot generate alarms. Any terminal error condition
will be signalled by closing the direct connection without
sending the end-of-transmission indicators.

Wu!

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 14

2.1.3.5. DELETE

The Delete procedure call is the only "collective" operation
implemented in FP/360. The form of the Delete procedure call is:

FP-DEL (LIST (local ped))

-> (LIST (error descriptor))

where the arguments are physical copy descriptors defining the
data sets to be deleted, and the result-list is either empty or a
list of corresponding error descriptors. The possible results
are:

* If all specified deletions are successful, the entire

transaction completes in REPLY mode (reference 3), and the
result-list is replaced by a LIST of count 0.

" If there is an error that relates to the procedure call as a

whole, the transaction completes in ERROR mode (reference 3) and
the result-list is a LIST of count 0.

* Otherwise -- if there is one or more errors relating to the
deletion of specific data sets in the argument list -- then the
entire transaction completes in ERROR mode (reference 3), with
the main NTP error descriptor specifying "partial results
returned". In addition, the result-list contains a result
descriptor for each specific PCD. Each of these descriptors is
either: a null list, if the deletion was successful, or a list
of the form

LIST (errorclass, errnumber, errorstring)

Notice that errors associated with a single PCD have no effect
on the processing of other PCD's.

Version 2 restriction: The Checkpointer is nov sending the Delete
call using another syntax -- the single PCD is not enclosed in a
list. For now, that form is the one recognized by FP/360. Il

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FF1360

PAGE 15

2.1.3.6. ANALYZE

The Analyze procedure is currently incompletely defined.
Therefore, in FP/360, Analyze is a no-operation corresponding to
the form:

FP-ANAL (>C

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 16

2.1.4. NSW FILE ATTRIBUTES

An NSW file is really an abstraction, standing for a collection of
equivalent physical copies. The location of each physical copy is
defined by an NSW data structure called a Physical Copy Descriptor,
or PCD. All physical copies of the same NSW file share the same
Global File Attributes, or GFA's.

The GFA's of an NSW file, and thus of the data in a local copy, are
passed to an FP in the form of a character string called a "Global
File Type", or GFT. This string consists of a prefix part which is
the NSW "host family name" ("360" for the family to which FP/360 is
native), followed by a hyphen, followed by a suffix part chosen to
be unique and mnemonic within the "family". Such a name represents
very nearly the complete set of data attributes that a particular FP
must know about the local copy.

In FP/360, attributes are structured into three discrete levels;
however, it should be recognized that the assignment of attributes
to one level or the other is more an engineering (if not political)
decision than a theoretical consequence. As a result of future
experience with the NSW, additional attributes may be added to the
global set, the driving force being tool installers and users who
want data type mismatches to be handled automatically by the NSW
mechanism.

* Global File Attributes

Global File Attributes (GFA's) are basic ones that apply to the
data within a file, whether it is represented in IL or not. These
must be the same for all copies of that file. They are uniformly
defined across all NSW host families. The character/binary
distinction is a good example.

While these attributes are strictly implied by the GFT, their
derivation is always performed by the Works Manager, in order that
FP/360 need not be aware of the meanings of GFT's not native to
the 360 family. These derived attributes are packaged into the
Global File Descriptor, or GFD. A GFD is always shipped along
with a GFT when the Works Manager sends the GFT to FP/360, with
one exception: the output file type of the Export procedure is
represented only by a GFT because that GFT is guaranteed to be
native to the 360 family. FP/360 keeps a table of the attributes
of all native types, and this table includes the information in
the corresponding GFD's.

* Local File Attributes

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 17

Local File Attributes (LFA's) describe the way that data of a
given type is represented in non-IL ("clear text") form within the
360 family. The columnar position of a key field is a good
example. These attributes are derived from the GFT for any native
type by FP/360. The LFA's provide the instructions needed by
FP/360 to translate data between IL string encodement and the
clear text encodement implied by the GFT.

* Physical Structure Attributes

Physical structure Attributes (PSA's) describe the specific
mapping of a data set on disk. On an IBM 360, the DCB parameters
are a good example.

PSA's are handled differently depending on whether FP/360 is
assigning them to a newly created data set or determining those
already assigned to an existing data set. In the former case,
default values can be derived from the GFT and embellished by
anything known about the quantity of data the file is expected to
contain. In the latter case, most PSA's are stored by the TBH
operating system as part of the data set label, and are available
to FP/360 on request.

NSW provides that PSA's that are not automatically available will
be kept by the Works Manager in a PCD field named PHYS. The PCD
is always available whenever FP/360 accesses an existing file, so
the PHYS field information is always available when it is needed.
However, since the PSA's used by FP/360 are kept by the local
operating system, FP/360 currently has no need for the PHYS field.

One special case should be noted. For each physical copy, an FP
will need to know whether it is physically encoded in IL. Since
this attribute is not kept by any existing host system, and since
it is meaningful across all NSW host families, it is kept in a
special field of the PCD named ILFLAG.

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 18

2.1.4.1. GLOBAL FILE ATTRIBUTES

As noted earlier, FP/360 may obtain the GFA's from the GFD (for a
non-native type) or from its own local table (for a native type).
In either case, FP/360 interprets the GFA's in the following
manner:

2.1.4.1.1. CLASS

This field determines whether the data consists of characters or
binary bytes, with the following consequences.

* Character-class data represents an array of ASCII graphics of
dimensionality between 1 and 4 (see the dicussion of
dimensionality below). A full complement of format effectors
is defined for use in positioning graphics within the array.
Unspecified array positions are assumed to contain the fill
character "blank", which is also used for optimal compression
in IL.

Data with dimensionality of 2 or higher is organized into
"records", with which there may be associated character-string
"keys". A common use of these keys is to record the "sequence
numbers" associated with text lines by some text editors,
.compilers, etc.

Binary-class data is of dimensionality 1 or 2, representing

either a single byte string or a sequence of (short) byte
strings called "records", respectively. There are no format
effectors other than the record separators. In
two-dimensional data, a record may be associated with a
character-string key as well as the binary text.

For binary-class data, the "fill" character used for IL
compression is a byte of binary zeros.

2.1.4.1.2. ZZY DEFINITIONS

When keys are associated with data records of the file, the keys
are always character strings. The GFA's for keys are a Boolean
"keys present" indicator and an integer "key length" field.

2.1.4.1.3. VARIA3LZ FORMAT EFFECTORS

Format effectors can be classified as regular and irregular,
with the regular ones further classified as horizontal or
vertical, as interval or absolute, as positive or negative, and
as fixed or variable (see figure 1). The fixed format effectors
are Interpreted the same for all files and by all FP
implementations (by system-wide convention, Carriage Return and
Backspace are always considered to be non-destructive). The

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 19

variable format effectors are defined in the GFD under the name
TAB-DESCRIPTOR and can thus be interpreted the same, for a given
file type, by all FP implementations.

FP/360 will be able to support expansion of all defined format
effectors received from remote FP's. However, when encoding
files of native global types, FP/360 will generate only regular
positive fixed forms and the irregular "SKIP(0)" form, i.e.,
only IL types.

pI

-r

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 20

Figure 1: Classification of Format Effectors

REGULAR HORIZONTAL TYPES:

Interval positive (d>0)-- (Variable): HT as interval

Interval negative (d>0)-- (Fixed): Destructive BS
(not in ASCII)

Absolute positive (d>l)-- (Variable): HT as stop list

Absolute negative (d>l)-- (Fixed): Destructive CR
(not in ASCII)

REGULAR VERTICAL TYPES:

Interval positive (d>l)-- (Variable): LF, VT as interval, or
(Fixed): IL "skip n" (n>0)

record control.

Interval negative (d>l)-- (fixed): Inverted linefeed
(not in ASCII)

Absolute positive (d>2)-- (Variable): FF, VT as stop list, or
(Fixed): IL NewPage

Absolute negative (d>2)-- (none defined)

IRREGULAR TYPES:

(d>3)-- Non-destructive backspace

(d>3)-- Non-destructive carriage return

(d>3)-- IL "skip 0" record control

-I.'

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 21

2.1.4.1.4. DIMENSIONALITY

FP/360 copies a file in the form of a one-dimensional stream of
characters or binary bytes. However, this stream is understood
to represent an array of more complex structure, with up to four
meaningful dimensions. The logical equivalence of physical
copies of the same NSW file is properly stated in terms of
equivalence of the multidimensional array rather than that of
the stream used for transmission. Thus FP/360 must concern
itself with preserving the integrity of that array. In
particular, FP/360 interprets the dimensionality in the
following manner:

2.1.4.1.4.1. DIHENSIONALITY - 1

One-dimensional data consists of a stream of bytes (or
characters) that are not logically grouped into lines or
records. The single dimension corresponds to file size, and
is effectively unbounded.

(BYTE [c], c= 1 to file-size}

For character-class files, regular horizontal format effectors
(see Figure 1) are possible, but no other format effectors
would be meaningful. The data may be broken arbitrarily into
record-like strings for convenience in handling, but it is
understood that these strings are not logical records.

IL "record control" fields have no meaning; FP/360 will ignore
them when receiving and will generate "SKIP(O)" when
transmitting.

Logical equivalence of one-dimensional file copies is defined
to be equivalence of the byte or character streams represented
by the encodement (i.e., after IL expansion), regardless of
the class of the data.

A one-dimensional file cannot have keys.

2.1.4.1.4.2. DIMENSIONALITY - 2

Two-dimensional data consists of a stream of bytes (or
characters) divided into records or lines. Keys are
permitted, and if they appear there is a key included with
each record. The first dimension is bounded by the "Record
Length Range" datum of the LVD, but the second corresponds to
file size, and in effectively unbounded.

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 22

{ KEY [k, r], BYTE [c, r],

for: c- 1 to max-record-text-length,
k- 1 to key-width,
r- 1 to record-count, }

For character-class files, it is possible to define any kind
of regular horizontal format effectors and regular vertical
interval format effectors, but no other kind are meaningful.

Equivalence of two-dimensional file copies is defined to be
equivalence of the two right-ragged arrays represented by the
data encodement (i.e., after IL expansion), and when
appropriate, of corresponding keys. The right edges are
defined to include trailing "fill characters" as a part of the
data.

2.1.4.1.4.3. DIMENSIONALITY - 3

Three-dimensional data consists of a stream of characters,
grouped into lines, which are then grouped into pages. Keys
are legal, but will probably be rare. The first dimension is
bounded by the "Record Length Range" datum of the LFD, and the
second by the "page depth" datum, but the third corresponds to
file size, and is effectively unbounded.

(KEY [k, r, p]. BYTE [c, r, p l,

for: c- 1 to max-record-text-length,
k- 1 to key-width,
r- 1 to page-depth,
p- 1 to page-count

Only character-class data can be three-dimensional, and it is
meaningful to define all regular format effectors.

Equivalence of three-dimensional file copies is defined to be
graphical equivalence of the two arrays represented by the
data encodement (i. e., after IL expansion), and when
appropriate, of corresponding keys. The right edges are
ragged in all dimensions, and are defined to exclude trailing
"fill characters" from significance as data.

2.1.4.1.4.4. DIMENSIONALITY - 4

Four-dimensional data consists of a stream of characters,
grouped into records, which are then grouped into lines, which
WZ then be grouped into pages. Keys are legal, but will
probably be rare. The first dimension is bounded by the
'Record Length Range" datum of the LFD, and the second
corresponds to overprinting and is unbounded. The third

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 23

dimension is bounded by "page depth", while the fourth

corresponds to file size and is also unbounded.

{ KEY [k, r, 1, p], BYTE [c, r, 1, p],

for: c- 1 to max-record-text-length,
k- 1 to key-width,
r- 1 to max-overprint-depth,
1= 1 to page-depth,
p= 1 to page-count)

Only text-class data can be four-dimensional, and it is
meaningful to define all regular and irregular format
effectors.

Equivalence of four-dimensional file copies is defined to be
graphical equivalence of the two arrays represented by the
data encodement (i.e., after IL expansion), and when
appropriate, of corresponding keys. The right edges are
ragged in all dimensions, and are defined to exclude trailing
"fill characters" from significance as data.

2.1.4.1.5. BYTESIZE

A file may consist of bytes of a width in" the range 8 - 255
bits; however, FP/360 will refuse to process files with a
bytesize other than 8.

Supporting the IBM File System in NSW
Noviuber 20, 1980 -- Part II: FP/360

PAGE 24

2.1.4.2. LOCAL FILE ATTRIBUTES

FP/360 gets its LFA's from a Local File Descriptor (LFD) which is
stored locally and retrieved via the GFT. The fields of this
descriptor are listed below.

It is important to understand that values for certain LFA's are
often required by FP/360 even when thay do not appear to have
meaning for the particular data type. This is because they may be
needed to perform a type conversion into that type from a
non-native type about which nothing is known. For example, a
"page depth" datum is tabulated for a two-dimensional data type if
conversion of non-native three-dimensional data into that type
could occur, even though page depth has no meaning for an existing
two-dimensional file.

In the following, some variables have as a value an indicator that
user permission is to be obtained via the NSW HELP mechanism. In
Version 2, that mechanism is not available to FP/360, so these
permissions are assumed to be granted.

Certain of the LFA's are now required by NSW convention to be set
in certain ways. For instance, it has now been decided that
trailing fill characters are always significant in one- or
two-dimensional data.

2.1.4.2.1. Dimensionality preference -- this datum defines a preference
ordering of the four dimensionalities for situations where
dimensional conversion may be required. For each, a flag
indicates whether conversion from that dimension is permitted,
forbidden, or permitted only with explicit user permission.

2.1.4.2.2. Min Record Length, Max Record Length -- These two fields give
the minimum and maximum number of bytes of text (exclusive of
keys) that a record of this type can contain.

2.1.4.2.3. Short record handling -- pad, signal error, or ask user.

2.1.4.2.4. Long record handling -- truncate, fold (make two records), ask
user, or signal error.

2.1.4.2.5. Record fold margin -- what column continuations begin in.

2.1.4.2.6. Page depth -- the number of lines (not records) to a printer
page.

2.1.4.2.7. Short page handling -- pad, leave as-is, or ask user.

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 25

2.1.4.2.8. Long page handling -- truncate, fold (make two pages), leave
as-is, or ask user.

2.1.4.2.9. Key position -- 1-origin index of the text-field byte before
which the key is to appear.

2.1.4.2.10. How to generate missing keys -- don't (signal error), count
records, blank fill, delete field, or ask user.

2.1.4.2.11. Option switches:

Force upper case
Suppress code translation
Suppress IL expansion
Input-only type
Trailing fill characters are significant

2.1.4.2.12. Format effector handling switches:

Horizontal tab handling:
Leave as tab code,
Expand by input GFD, or
Expand by output GFD.

Vertical format effector handling (For each of VT, LF, and
FF)"

Leave as EBCDIC code,
Expand by input GFD, or
Expand by output GFD.

Backspace handling:
Leave as backspace code,
Expand destructively, or
Expand non-destructively.

Carriage return handling:
Leave as carriage return code,
Expand destructively, or
Expand non-destructively.

2.1.4.2.13. Compression factor -- typical IL bytes/"clear text" bytes.

61

Supporting the IBM File System in NSV
November 20, 1980 -- Part II: FP/360

PAGE 26

2.1.4.3. PHYSICAL STORAGE ATTRIBUTES

FP/360 gets its PSA's for an existing data set from the data set
label. When creating a new data set, recommended PSA's are
tabulated in a descriptor (the PSD) which can be retrieved via the
GFT. Its fields are:

* DSORG -- the data set organization.

FP/360 will support only Physical Sequential (DSORG=PS) in
Version 2.

* RECFN -- the record format.

In Version 2, FP/360 will support:

F [B[S]][A] (fixed-length records)
V [B][S](A (variable-lenSth records)
U [A] (undefined-length records)

* OPTCD -- data managment option codes.

FP/360 will not support any of these in Version 2.

* LRECL -- logical record length.

* BLSIZE -- physical block size.

Two values are tabulated. FP/360 may choose a value within that
range which is compatible with RECFM and LRECL, and which
optimizes utilization of the selected physical device. If the
two values are the same, then no variation in block size is
allowed.

* KEYLEN -- length of random-access retrieval key.

* RIP -- offset of random-access retrieval key.

Version 2 does not support random access to data sets, so
non-zero values of KEYLEN and RKP will not occur.

* SPACE -- recommended allocation if no size data is available.

There are three fields -- PRIMARY, SECONDARY, and DIRECTORY.
The first and second fields are inital and subsequent allocation
quantities in selected-blocksize units. The third field is
relevant to partitioned data set organization, and so is not
currently supported. It will always be zero.

p.

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 27

2.1.5. MAPPING FILES ON A 360

Under FP/360, a file encoded in IL is recorded on disk according to

these conventions:

1) The data set organization is Physical Sequential (DSORGUPS).

2) The record format is Variable Blocked (RECFM=-VB) or Variable
Blocked Spanned (RECFM-VBS), depending on the values selected
for LRECL and BLKSIZE.

3) Each logical record is one IL transmission block. The maximum
logical record length (LRECL) is four greater than the
corresponding SendMe procedure transmission block size, since
disk records have count and control fields four bytes long,
and the transmission block size does not include even the
2-byte IL count fields.

4) The data set maximum block size (BLKSIZE) is independent of
the data. It is selected by FP/360 by choosing a
device-optimizing value between two limits provided it as
initialization parameters.

5) The data in the data set can be considered free of any LFA's,
whether or not its GFT is 360-native.

I MOM

Supporting the IBM File System in NSW
November 20, _980 -- Part II: FP/360

PAGE 28

2.1.6. CONVERSIONS IN FP/360

A Transport or Export operation may create a new file with a
different GFT than the input file; the change of the file contents
as a result is called "conversion" of the file. Notice that such
type conversion may take place only when the target file is outside
NSW file space

*the original GFT is always preserved within NSW file
space.

2.1.6.1. TRANSLATABILITY

The translatability of a file is a function of its existing GFT
and the desired new GFT, or, more precisely, of an input GFD and
an output GFT, GFD, and LFD. A legal translation will have all
the following properties, and need have none other:

1) The output GFT is native to the 360 family.

2) The input and output data classes (binary vs. character) are
the same.

3) The input dimensionality is one that is permitted by the
output LFD.

4) Either the input has keys, or the output does not have keys,
or the output's "how to Ienerate missing keys" datum doesn't
contain the value "don't".

5) The Bytesize fields match.

For purposes of selecting the primary output GFT which is "best",
FP/360 defines a "dimensionality preference" table in the GFD for
each output type. The table contains four entries, one for each
of the possible input dimensionalities. An entry actually
consists of two parts: a three-state translatability flag with
values:

* "permitted"

* "permitted with user permission"

* "not permitted"

and a preference-rank number (ignored for "not permitted"
entries). Version 2 of FP/360 will not support asking users for
permission, so those in the second category are treated as
"permitted", but with lower preference than those in the first
category. Version 2 will therefore select the target GFT with
"permitted" dimensionality and the highest rank number, or if none

are "permitted", the one "permitted with user permission" and
highest rank number.

i; i;

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 29

2.1.6.2. DIMENSIONAL CONVERSION

When a file is entered into NSW file space, its GFT and therefore
its dimensionality attribute must be declared. This attribute
specifies the maximum dimensionality that the file might have, and
that the eventual user of the file must be prepared to handle;
however, the actual file contents might in fact be of lower
dimensionality. If a host "lies" and declares all its files to be
of dimensionality 4, many tools may refuse to process these files
as input. However, there may be no harm in a paper-tape host
declaring every file to have dimensionality 3.

Any data of dimensionality "n" is also legal data of
dimensionality "n+l", where the bound of the new dimension is one.
However, the converse is not true. In particular, when FP/360 is
instructed to reduce the dimensionality of a 4-dimensional file,
it must make potentially destructive changes. By external
conventions, all native types permit conversion out of any higher
dimensionality only with explicit user permission; however, if
there is no user to ask, the conversion is permitted.

In general, a conversion which lowers the dimensionality by n can
be defined in terms of a series of n conversions, each lowering
the dimension by 1. In all cases the surfaces of the unwanted
dimension collapse into a plane, somewhat as does a closing
Venetian blind. This has the correct default property: if the
data is in fact of the lower dimensionality already, it will be
unchanged by the transformation.

2.1.6.2.1. CONVERTING 4 TO 3

This is an information-destroying conversion. Each page
consists of a primary page surface and an unbounded number of
overprint page surfaces. Cross sections of these surfaces are
lines. The intersection of a line and a page surface is a
record. In most cases, the overprint dimension is very narrow
and very ragged.

For every line, each non-null overprint record is meshed into
the primary page surface by pushing down all subsequent lines,
including null ones. The page is thus reduced to a single
surface. If the depth of this surface exceeds the upper bound
of the page-depth dimension, the "long page handling" datum of
the output LFD is queried. If this has the value "truncate",
excess lines are discarded. If it has the value "fold", a new
page surface is constructed of the excess lines, and this
surface is placed behind the current page by pushing all
subsequent pages back one. If it has the value "leave as-is",
the page-depth bound is effectively (but temporarily) increased
to accomodate the long page.

M illii 1

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 30

The above procedure is implemented by replacing "skip 0" record
control with "skip 1". If page overflow occurs, either records
are discarded until the next "formfeed" record control, a
"formfeed" is forced into an existing record, or the situation
is simply ignored.

2.1.6.2.2. CONVERTING 3 TO 2

Each page consists only of a single surface. These surfaces
have a fixed maximum line count, but vary in actual line counts.
Each page is catenated to the bottom of the previous page. If
the page being catenated to has fewer than the maximum lines,
and if the output LFD "short page handling" datum has the value
"pad", then null lines will be inserted to bring the short page
up to size.

In other words, "formfeed" record control is converted to "skip
n", where "n" is either 1, or 1 plus the output page depth minus
the line counter.

2.1.6.2.3. CONVERTING 2 TO 1

Each record is catenated after the previous one, resulting in a
single string. Keys are discarded. IL record control fields of
the form "skip n" are replaced by a string of length n-l times
the output's "minimum text length" field, and containing the
selected fill character. In practice, it is then necessary to
break the resulting string into arbitrary transmission block
strings, and prefix these with meaningless "skip 0" fields.

FP/360 will not actually support this conversion in Version 2.

2.1.6.3. CASE CONVERSION

If the "force upper case" option switch is set for the output file
type, and if type translation is in effect (that is, if the input
and output file types are not equal), then case conversion occurs.
The EBCDIC codes for the lower-case characters ("a" - "z") are
converted to those for the upper-case characters ("A"l - "1"). No
other character codes are affected.

2.1.6.4. TRUNCATION AND PADDING

When type translation is in effect (that is, if the input and ._-j
output file types are not equal), then record and page truncation
and padding may occur. These conversions are governed by the
indicators set in the local file attributes. They are implemented
as described above under "DIMENSIONAL CONVERSION".

11

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 31

2.1.6.5. FORMAT EFFECTOR EXPANSION

When translating a file out of IL representation, and in no other
case, format-effector conversion occurs. This conversion is
defined to operate on those ASCII format effectors that the
encoding File Package has seen fit to represent in the stream by
tokens of the corresponding explicit IL format-effector type
codes. The data characters of an IL stream are fully transparent,
so format effectors that have been left in that representation are
simply translated into their EBCDIC equivalents.

The ASCII format effectors that are converted are: form feed
(FF), line feed (LF), vertical tab (VT), horizontal tab (HT),
backspace (BS), and carriage return (CR). Each occurrence of
these codes is converted without regard to any pairing. It is a
vequirement on the encoding File Package that pairs of format
effectors that are equivalent in meaning to the IL "new line"
("skip") and "new page" record control constructs be represented
by those constructs.

Each format effector has a corresponding local attribute that
defines how it is to be expanded. The details of the expansion
are left for a future version of this document.

-II

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 32

2.2. FP/360 PROGRAM LOGIC

FP/360 has the overall structure shown in figure 2. The dispatcher
establishes process instances, accepts procedure calls, and selects a
procedure executor. Each procedure executor is responsible for
decoding that procedure's parameters, and usually, for completing the
main transaction by encoding appropriate results. The first action of
an executor is thus to invoke the PL/B8 package (reference 5) to
decode the NSWB8 string contaning the parameter list, according to the
particular syntax of that procedure call.

Ignoring for the moment the trivial functions, we can describe FP/360
as primarily a software machine for executing a copy operation on a
data file, possibly producing two outputs for a single input.
Following this model, most of the procedure executors invoke a
"back-end" component called the Basic Copy Machine, or BCH (reference
8), after parametrically tailoring it for the particular procedure
being executed. The BCM sports a variety of mode switches by which it
can be parameterized to perform one of at least three basic copy
types: local copy, remote get, or remote send. Similar switches
control conversion of data among three possible forms: clear text,
IL-encoded, and "normalized", an intermediate encodement internal to
the BCI.

Because of the complexity of the BCM, it is separately documented --
see reference 8.

Further discussion of the logic of FP/360 is deferred for a future
version of this document.

I

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 33

Figure 2. FP/360 Structure

* FP/360 DISPATCHER *

------- > ANALYZE EXECUTOR *I * *

I *

------- > DELETE EXECUTOR *I* *

I * *
------- >* SEND EXECUTOR *---------*I * * I

I * * I
------- > TRANSPORT EXECUTOR *--------I * * I

I _ _ _ _ _ _ _ _ _ _ _ _ __aaa aaa I
I * * I
------- > IMPORT EXECUTOR *---------*I * * I

I _ _ _ _ _ _ _ _ _ _ _ _ __aaaa aaa I
I * * I
------- > EXPORT EXECUTOR *--------*

V
. A. AAAAAA vAAAAAA

* BASIC COPY *
* MACHINE *

*&11611 woo

Supportii4g the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 34

2.3. APPENDIX A: STATUS OF FP/360 IMPLEMENTATION

2.3.1. CURRENT RESTRICTIONS AND DEFERRED FEATURES

The following features of the current FP specification have not been
implemented, or have been incorrectly implemented in Version 2 of
FP/360. This list is roughly ordered by decreasing importance
and/or increasing cost of implementation.

2.3.1.1. FORMAT EFFECTORS

All format effectors and record control tokens of IL are
implemented. However, those whose interpretations are defined in
the GFD (HT, VT, LF, and FF) are supported only in their interval
form. That is the only form ever used by the other host families
that FP/360 must support at this time.

2.3.1.2. ALARMS

FP/360 never arms itself for alarms, and it never sends an alarm;
however, the status of alarms in the current File Package
specification is in flux anyway. In the meantime, FP/360 has no
mechanism for reporting the status of a transfer operation. If an
error condition is found during data transfer, FP/360 will
imediately close the connection, without sending the required
in-band normal-eod signal.

2.3.1.3. ERROR DESCRIPTORS

Full error descriptors are not supplied by FP/360 due partly to
restrictions in the current version of the PL/PCP package
(reference 3), which FP/360 uses for transaction management. In
particular:

* The optional parts of an error descriptor are always null.

* Only one error can be reported -- the first one detected.

* The values of the fault class and fault number fields have not
been properly correlated with other FP implementations.

* An error descriptor received by FP/360 from an imbedded SendMe

transaction is not copied into the reply that completes the main
transaction. The reply will indicate only that an error
occurred in "Send!e".

r

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 35

2.3.1.4. STREAM FILES

Conversion to or from one-dimensional files is not supported.

2.3.1.5. FAMILY COPIES

A format for family copies of files which cannot be described in
IL has not been defined for the IBM 360 family. All network
transmission uses IL.

2.3.1.6. PASSWORD PARAMETER

A local data set can be accessed by the FP only if it exists
within a directory in the NSW directory group (i.e., having the
NSW charge number). Since there is no mechanism to "connect" to a
non-NSW directory, the password parameter is ignored for local
data sets.

2.3.1.7. IL REBLOCKING

IL reblocking is not supported; a request to send an IL-encoded
file with a transmission block size smaller than the IL blocksize
in which it is recorded on disk may fail. This is not expected to
be a problem, since IL block sizes are not expected to vary in the
near future.

2.3.1.8. BYTE SIZE

Only byte size 8 is supported.

2.3.1.9. SUBFILES

The "subfile" facility of IL is not supported.

2.3.1.10. ANALYZE

The FP-ANAL procedure call is a no-operation, and FP/360 itself
never issues such calls.

2.3.1.11. PHYSICAL FORMAT RESTRICTIONS

Only sequential (DSORG-PS) files are supported on the 360. In
particular, partitioned (library) files are not supported, nor are
generation data groups.

The MYT option codes (OPTCD) are not supported.

Direct (non-sequential) access to a keyed data set is not
supported.

.........

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/?60

PAGE 36

2.3.1.12. DEVICE TYPES

The filospace must be on permanently-resident direct-access
volumes; tapes and removable disk packs are not supported.

2.3.1.13. HONESTY CHECKS

During translation or re-encodement of a file, FP/360 does not
verify that the input data conforms to the advertised
dimensionality. However, the result created by FP/360 will have
the requested dimensionality, regardless of input. There is one
major exception: if the input and output files are of the same
type and encodement, then no data interpretation occurs during the
copy, and no checking of any kind is done.

Aj
t0

" /.

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 37

2.3.2. FP SPECIFICATIONS QUESTIONS

This section lists design features of FP/360 which are at variance
with questionable or unsettled aspects of the official FP specs.
They are listed here to draw attention to some areas of uncertainty
in the specifications.

2.3.2.1. OVERWRITING EXISTING DATA

If FP/360 is asked to overwrite an existing data set, it will
delete the existing copy and create a new data set. This approach
has been taken because there is now no way to avoid it and make
NSW work. However, we believe that there are scenarios where this
destruction of existing data may be an accident. One would hope a
conscientious WM would be concerned about clobbering data
accidentally.

2.3.2.2. EXPORT FAILURES

When FP/360 Export is creating both a primary (exported) copy and
also a secondary NSW copy, it fails if either copy fails, even if
the other' copy could have been created successfully. This could
waste an expensive and lengthy network transmission. We suggest
that the FP specifications be changed to allow a partial success
in Export.

2.3.2.3. RESULT LISTS

In general, when FP/360 encounters an error, it will abandon the
operation completely rather than complete it partially.
Therefore, the "result list" for the FP calls will be null.
Eventualy, it may be desirable to define a restart mechanism to
salvage partial file transfers.

An exception is the Delete operation. FP/360 will handle a list
of deletions, returning a result list that indicates which ones
succeeded and which ones failed.

2.3.2.4. SYNTAX OF DELETE

The syntax of the Delete transaction is implemented according to
what is now being received from the Checkpointer, not according to
the FP specifications. The Checkpointer is due to be chcnged in
the future.

2.3.2.5. READ-ONLY FILES

NSW specifications state that a tool may have access to only a
copy of an NSW file; however, there are a number of potential 360
tools which are incapable of writing to their input files, and
which can be reliably expected not to clobber them. For these

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 38

tools, we need to avoid the delay inherent in making an
unnecessary copy. We now do this using the "read-only" local file
attribute, but this method is unsatisfactory both in design and
implementation. We need an NSW-wide specification for this
facility.

2.3.2.6. AVOIDING REDUNDANT LOCAL COPY

If Export finds a local NSW copy of the source file, it does not
produce a new NSW copy even if requested to do so. We believe
that the FP specifications should state this.

2.3.2.7. ASKING USER ABOUT CONVERSIONS

When a requested file conversion implies a non-invertible change
of the logical file contents, we wish to make a HELP call to ask
the user's permission. This facility is not presently available
to us, so FP/360 assumes that the permission is granted. We
believe that the HELP facility should be made available to a File
Package whenever there is a User available.

S

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 39

2.3.3. DESIGN POINTS

The following are particular aspects of the FP/360 design that we
believe to be permanent and non-controversial. They are listed here
just because someone may want to know.

2.3.3.1. FILE NAMING CONVENTIONS

The catenation of the PCD's DIRECTORY and NAME fields, with a
period between, must form an MVT DSNAME of at most 44 characters.

2.3.3.2. USAGE OF PCD PHYS FIELD

The PHYS field of the PCD is never examined. In locally created
PCD's, it will be a null character string.

2.3.3.3. SELECTING CANDIDATE FILE FOR EXPORT

Export will prefer input PCD candidates in this order:

1) a local data set not IL-encoded.
2) a local IL-encoded data set.
3) a remote IL-encoded file.
3) a remote file not IL-encoded.

2.3.3.4. EXPORT RETRY

If FP/360 Export encounters a failure in retrieving a particular
physical copy of a file, it will select the next most desirable
copy from the PCD list and try again. This will continue until a
copy is produced, the PCD list is exhausted, or the number of
retries exceeds a limiting value which is an initialization
parameter.

2.3.3.5. UNDEFINED FORMAT EFFECTORS

FP/360 will support variable format effectors only when they are
explicitly defined in the GFD. If such a format effector occurs
without a GFD definition, it will simply be converted into the
corresponding EBCDIC code. However, such codes are included in
the EBCDIC set only for physical device control; they are normally
unacceptable input to 360 tools.

i

Supporting the IBN File 3ystem in NSW
November 20, 1980 -- Part II: FP/360

PAGE 40

2.4. APPENDIX B: 360 FAMILY CONVENTIONS

At present, FP/360 does not exist on more than one host; therefore, no
actual intra-360 communications techniques are defined. The items
below are only directions which maht develop into family conventions.

2.4.1. All line transmission, even family copies, will probably use the IL
encodement. We believe that a true family transmission protocol
will become useful only when special file structures such as IBM's
Partitioned Data Set (PDS) organization are supported. Even then,
we would propose to use a superset of IL as the family protocol.

2.4.2. The PCD DIRECTORY filed contains that part of the local data set
name that corresponds to an KVT/TSO LOGON directory. This is not
absolutely constant across NVT implementations, so, for the purpose
of defining a 360 family convention, no more will be said.

2.4.3. The NAME field contains that part of the local DSNAME that is not in
DIRECTORY. The DSNAME is formed by catenating these two fields with
a period between them.

2.4.4. The PCD ILFLAG field is the only place where FP/360 records or
discovers the fact that a local data set is in IL.

'6

P -

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 41

2.5. APPENDIX C: VERSION 2 INITIALIZATION PARAMETERS

FP/360 decodes a set of initialization parameters from a configuration
data set which may optionally be supplied under file name (DDNAME)
PhRMS. This data set is in the form of a PL/I GET DATA input stream.
The following data may be specified, where each name should be
qualified by the name "P.":

Name: Type: Default: Meaning:

NSWDIRECTORY CHAR 'AHA179.NSW' Default directory name for
creating a new data set
in NSW filespace.

NSWDSNPAT CHAR 'GEN.NSW?????' Default name used for
creating a new data set
in NSW filespace.

WSPDIRECTORY CHAR 'AHA179.NSW' Default directory name for
creating a new dataset
outside NSW filespace.

WSPDSN PAT CHAR 'GEN.hSP?????' Default name used for
creating a new data set
outside NSW filespace.

GENERICNAME CHAR 'FLPKG' FP/360's MSG generic name.

MSGTIMEOUT FIXED 60,000 MSG message timeout value,
in 0.01 seconds.

PCP TIMEOUT FIXED 600,000 PCP transaction timeout value,
in 0.01 seconds.

MAXCOPIES FIXED 1 Limit on the number of copy
attempts within Export.

MAXILTRANS FIXED 7286 Maximum length of an IL
transmission block.

MAX BLKSIZE FIXED 7294 Upper limit on block size of
IL data sets.

(continued)

Supporting the IBM File Syste& in NSW
November 20, 1980 -- Part II: FP/360

PAGE 42

MINBLKSIZE FIXED 1000 Lower limit on block size of
IL data sets.

GMTADJUSTMENT FIXED 8.0 Number of hours EARLIER than
Greenwich to assume the
local clock to be running.
The value may be signed
(for the Eastern hemisphere)
and may carry the fraction
".0" or ".5" (for half-
hour time zones).

MA MATERS FIXED 1 Limit on number of remater-
izations of process before
it stops.

NSWVOL CHAR 'NSWPO1' Direct-access volume on which
to create new data sets in
NSW file space.

WSPVOL CHAR 'NSWPOl' Direct-access volume on which
to create new dapa sets in
a tool workspace.

-q

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 43

2.6. APPENDIX D: IL GRAMMAR

I. The File Transmission Protocol

<file-transmission>
::= <transmission-block> (l:n) <eot>

<transmission-block>
: <byte-count> <block>

<byte-count>
::- unsigned two byte quantity greater than 0

<eot>
::= end of transmission. a <byte-count> - 0

<block>
: a block of file bytes, <byte-count> long

II. The Intermediate Language Grammar

<text-files>
::= concatenation <block> (l:n)

<text-files>
: <text-file> "251"

<subfiles> "251" (not supported)
<subfiles>

::- <subfile> (l:p) (not supported)
<subfile>

::= <text-file> "25011 (not supported)

III. File Records

<text-file>
::= <record> (O:q)

<record>
::- <data-record>

<data-record>
= <rec-ctl> <key> (0:1) <item> (O:s)

(continued)

Supporting the IBM File System in N3W
November 20, 1980 -- Part II: FP/360

PAGE 4

IV. Record control

<re-ct 1>
11"224"1 1 "225"1 11. 237"1

I"238" <ni>
I"239" <n2>

11"246"1 new page
<format-eff>

<nl>
unsigned 8-bit quantity

<n2>
=unsigned 16-bit quantity formed by

concatenating two successive 8-bit bytes
<format-eff>

1242" (line feed)
I"243"1 (vertical tab)
I "24" (form feed)

V. Keys

<key> <char> (k)

VI. Data Record Items

<item>
:<string>
I<repeat>
I<fill>
I<special-character>

<string>
::-n <str-len> <char> (0:r)

<repeat>
::- <rep-len> <char>

<str- len>
111 1 I'l " 1" 1 2 I I "127"

<fill -len>

:= "128" I "129"t *. "191"
<rep-len>

:: "192" I"193"11 .. "223"
<special-character>

11"240" backspace
I "241" horizontal tab
I "245"1 carriage return
I"247" <ASCII-ctl>

<ASCII-ctl>
an ASCII control character

(continued)

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 45

VII. IL Types

PATTERN VALUE RANGE MEANING

Oxxxxxxx 0 - 127 string length 0 : 127
lOxxxxxx 128 - 191 fill length 0 : 63
ll0xxxxx 192 - 223 repeat length 0 : 31
lllOxxxx 224 - 237 begin new record,

advancing 0 - 13 records
11101110 238 begin new record,

advancing 0 - 255 records
11101111 239 begin new record,

advancing 0 - 65535 records
llllOxxx 240 - 247 format effectors

240 backspace
241 horizontal tab
242 line feed
243 vertical tab
244 form feed
245 carriage return
246 new page
247 ASCII special character

lllllOxx 248 - 251 subfiles and blocking
248 reserved
249 reserved
250 end of sub-file
251 end of IL transmission

llllllxx 252 - 255 reserved

am

Supporting the IBM File System in NSW
November 20, 1980 -- Part II: FP/360

PAGE 46

REFERENCES

1) Cashman, Faneuf, and Muntz, "File Package: The File Handling
Facility for the National Software Works". Document
CADD-7612-2711, Massachusetts Computer Associates, Wakefield,
Massachusetts, Revised December 27, 1976.

2) Schantz and Millstein, "The Foreman: Providing the Program
Execution Environment for the National Software Works". Document
CADD-7701-0111, Massachusetts Computer Associates, Wakefield,
Massachusetts, January 1, 1977.

3) Ludlam, "PL/PCP -- An NSW Procedure-Call Protocol Package for
PL/I". UCLA/OAC document UCNSW-402, November 15, 1980.

4) Ludlam and Rivas, "PL/MSG -- An MSG Interface for PL/I". UCLA/OAC
document UCNSW-401, November 15, 1980.

5) Braden, "PL/B8 -- A PL/I Interface Package for NSWB8". UCLA/OAC
document UCNSW-403, November 15, 1980.

6) Braden and Ludlam, "An IP Server for NSW". UCLA/OAC Technical
Report TR7, April 1, 1976.

7) Braden, "PLOXI -- A PL/I Interface to Exhange". UCLA/OAC document
UCNSW-407, November 15, 1980.

8) Farrell and Ludlam, "The NSW Basic Copy Machine". UCLA/OAC
document UCNSW-203, November 20, 1980.

I
S,:

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: ECH

PART III

FP/360 THE BASIC COPY MACHINE

This section is separately available
as UCLA document UCNSW-203

Supporting the IBM File System in NSW
November 20) 1980 -- Part III: BCM

TABLE OF CONTENTS

3. PART III: THE BCM.......................1
3.1. BCM FUNCTIONAL SPECIFICATIONS. 1
3.1.1. PURPOSE AND CAPABILITIES. 1
3.1.2. FILES.......... 4
3.1.3. DATA TRANSFORMATIONS.......... 5
3.1.4. OPERATING ENVIRONMENTS...............6
3.1.5. BCM FILES 7
3.2. BCM USER'S MANUAL..... 8
3.2.1. CALLING THE BC
3.2.1.1. BUILDING THE INPUT FILE DESCRIPTOR. 11
3.2.1.2. BUILDING THE PRIMARY OUTPUT FILE DESCRIPTOR 13
3.2.1.3. BUILDING THE SECONDARY OUTPUT FILE DESCRIPTOR ... 17
3.2.1.4. BUILDING THE ENVIRONMENT DESCRIPTOR.........18
3.2.1.5. BUILDING THE DEFAULT VALUES TABLE...... ... 20
3.2.1.6. RETRIEVING BCH RETURNED VALUES...... 23
3.2.2. USEFUL SUPPORT ROUTINES...... 24
3.2.2.1. FPDGTYP -- DEFINE GLOBAL TYPE...........24
3.2.2.2. FPINIT -- ALTER DEFAULT VALUES.. 26
3.2.2.3. FMNULL -- BYPASSING PLIDAIR. 27
3.2.2.4. MSGHTYP -- FINDING HOST RELATIONSHIPS. 28
3.2.3. DEFINING FILE ATTRIBUTES. 29
3.2.4. SPECIAL REQUIREMENTS FOR NETWORK COPIES. 38
3.3. BCM MAINTENANCE MANUAL................39
3.3.1. BASIC STRUCTURE. 39
3.3.1.1. DATA ROUTING SWITCHES...... 41
3.3.1.2. DATA CONVERSION SWITCHES.. 41
3.3.2. DATA STRUCTURES. 44
3.3.2.1. DATA RECORDS.. 44
3.3.2.2. THE DATA REGION DESCRIPTOR..... 46
3.3.2.3. THE FUNCTION CONTROL AREA..... 51
3.3.2.4. THE CONNECTION DESCRIPTORS............53
3.3.2.5. THE ENVIRONMENT DESCRIPTOR............53
3.3.2.6. THE DEFAULT VALUES TABLE.. 53
3.3.3. PROCESSING PHASES.. 55
3.3.3.1. THE GENERATOR PHASE. 55
3.3.3.2. THE RESOURCE ALLOCATION PHASE...........55
3.3.3.3. THE WORK PHASE.......... 56
3.3.3.4. THE RESOURCE FREEING PHASE............57
3.3.4. SELECTABLE MODULES. 58
3.3.4.1. TRANSFORMATIONAL COMPONENTS...... 58
3.3.4.2. COPY MACHINE I/O COMPONENTS.. 61
3.4. APPENDIX -- AVAILABLE GFT'S........... .. 65
REFERENCES.......... 79

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

ILLUSTRATIONS

Figure 1: Basic structure of the BCM....... .. . 3
Figure 2: The BCM Data Region Descriptor. 9
Figure 3: The BCM Environment Descriptor.. 19
Figure 4: The BCM Default Values Table. 19
Figure 5: BCM error codes 21
Figure 6: BCM Parameterization Switches 40
Figure 7: The Generated Copy Machine 43
Figure 8: The Function Control Area 50
Figure 9: The Connection Descriptor... 50
Figure 10: Basic Logic After Generation.. 54

IIJI

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 1

3. PART III: THE BCM

3.1. BCM FUNCTIONAL SPECIFICATIONS

3.1.1. PURPOSE AND CAPABILITIES

The Basic Copy Machine, or BCM, is a CALL'able program for copying
and transforming a data stream. It was designed and developed as
the main working component of the National Software Works (NSW) File
Package program (reference 1, 2), and in all aspects its design
facilitates its use in that environment. However, it may be useful
in other environments as well, and this document is addressed to the
general caller as much as the File Package implementor and
maintainer.

The BCM may be useful in any situation where it is desired to copy a
data set with certain attributes of data, encodement, and storage,
into a data set with different attributes. The BCM is most useful
when each of the two sets of attributes corresponds to a
well-defined native file type that has already been assigned a
"Global File Type" (GFT) name; however, the user pay also enumerate
elementary attributes. Sections of this document will list
available GFT's, available elementary file attributes, and supported
trans formations.

The non-NSW caller will see some peculiarities as a result of the
BCM's NSW orientation. Notable among these are:

* The BCM describes the formats of its data files in terms of the
NSW's "Global File Type" (GFT) names. The general caller may
use a File-Package-provided subroutine to convert such a type
name into a set of elementary attributes, or he may specify
elementary attributes himself. The latter approach considerably
complicates use of the BCM.

* The parametric interface to the BCM is not compact or clean.
Some parts of it will not concern the general caller.

* The BCM expects a cooperative and friendly caller which has done
a reasonable job of consistency checking the BCM's input
parameters. Thus the BCM is not forgiving of errors.

* The BCM's capabilities for cross-network copying of data streams
are virtually unavailable to any caller except the NSW File
Package.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 2

* Many subroutine references can be left unresolved by the
non-network caller.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 3

Figure 1: Basic Structure of the 1CM

Data Regions: Copy Functions: Files:

---------------- * AAA...A0JLAJJ. oooooooooo
IINPUTr GET *<-..(INPUT 0
I Region ,-* Function * 0 File 0

------------- * .. A.LAAAL.A 000000000000000

V

Initial TRANSFORMATION
*Function

V
---------------- * 0000000000000000OOOOOOOOOOO

IINTERMEDIATE 1-->* Secondary PUT * 0 Secondary 0
IRegion * Function *-.->O OUTPUT file 0
---------------- AAAAAA.A 0000000000000000

V

*Final TRANSFORMATION *
Function

V
*----------- * ..AAA.AAJAAAA.A OOOOOOOOOO
IOUTPUT I'*Primary PUT * 0 Primary 0
IRegion I * Function *-m>O OUTPUT file 0
------------ * 0000000000000000....

(arrows indicate possible data record flow)

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 4

3.1.2. FILES

The basic structure of the BCM is shown in Figure 1. The program
uses three data files, each of which has attributes associated with
an NSW GFT name.

* There is always a primary input file. If this is to be a local
data set, it is allocated to and read through file name (DDNAME)
INPUT. It may also be a remote file on another NSW host.

* There is an optional primary output file. If this is to be a
local data set, the BCM will create it (if it already exists the
old copy may have to be deleted first) and write it through file
name WSPOUT. It may also be a remote file on another NSW host.
The data written through this file may be reformatted if the
file is assigned a different GFT from the input file.

* There is an optional secondary output file. If it is used, it
must be a local data set, and it must have the same GFT as the
input file.

The BCM also uses routine MSGJOUR, of the PL/MSG subroutine package,
to write informative messages to the user. This routine, unless
instructed otherwise (see the documentation for PL/MSG), will write
to QSAM output file MSGJOUR, if such a file is allocated. If it is
not allocated, no harm is done. If the program is executing in the
foreground, MSGJOUR will also, unless instructed otherwise, write
its output to the controlling TSO terminal via TPUT. There is an
option to also write the output to another TSO terminal, if the
named userid is logged on (reference 3).

Since the BCM is written in PL/I (for the IBM Optimizing Compiler),
it can conceivably write diagnostic messages from the PL/I running
system. These normally require a file named SYSPRINT. It is
advisable to allocate such a file just in case of errors.

Supporting the IBM File System in NSV
November 20, 1980 -- Part III: BCM

PAGE 5

3.1.3. DATA TRANSFORMATIONS

* The primary output file emits the data from the input file after
applying any required transformations. These may include:

* Transformation into a compressed form. The compression scheme
used is that defined for NSW Intermediate Language (IL);
however, EBCDIC to ASCII translation can be suppressed, and the
various ASCII-oriented format effectors that can be expressed in
IL are never generated by the BCM.

* Expansion from the compressed form. The various ASCII-oriented
format effectors that can be expressed in IL can be expanded or
converted to EBCDIC control characters. ASCII to EBCDIC
translation can be suppressed.

* Dimensional conversion among:

(a) Two-dimensional data -- lines or records.

(b) Three-dimensional data -- lines organized into pages.

(c) Four-dimensional data -- overprinted, records organized
into lines, and optionally further organized into pages.

* Generating, stripping, or interpreting ASA carriage control.
Note that when processing carriage control or format effectors
of any kind, the BCM must make an initial assumption about the
virtual position of the output file before any positioning is
performed. This is always assumed to be on the non-existent
line just preceeding the first line of the data space, with the
horizontal position left undefined.

* Generating, stripping, or moving sequence number fields.

* Truncating or folding long records or pages.

*Forcing upper case.

Stripping trailing fill characters (blanks for text data, binary
zeros for binary data).

* Changing the OS/360 RRCFM, 1AECL, and BLKSIZE.

-w.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 6

3.1.4. OPERATING ENVIRONMENTS

The BCM executes under IBM 0S/360 MVT, in the environment provided
by the PL/I Optimizing Compiler's execute-time library. The BCM can
operate in either the foreground or the background.

* FOREGROUND OPERATION -- The BCM is most at home operating in the
foreground, under the TSO Terminal Monitor Program (TMP). File
allocation operations are handled by the TSO DAIR routine,
through UCLA's PLIDAIR package (reference 4).

* BACKGROUND OPERATION -- The BCM will operate in the OS/360
background environment provided appropriate substitutes for the
PLIDAIR entries named ALLOC, CREALL, FREE, and DELETE are
provided. If file allocation operations are handled external to
the BCM (as through Job Control Language statements), these may
be stubs that return zero status codes. Renamed copies of
routine FMNULL can be used (see the section entitled USEFUL
SUPPORT ROUTINES).

The BCM can operate as either a local copy machine or a network copy
machine, with some restrictions in the latter mode.

* LOCAL OPERATION -- If the input and output streams of the BCM
are local data sets, then its use is essentially unrestricted.
The caller will need to set certain parametric data to
prescribed values in order to avoid actuating the network
communications machinery. He may delete certain BCM subroutines
that effect such communication, if the BCM is to be included in
his load module directly.

" NETWORK OPERATION -- If either the input or the output of the
BCM is not a local data set, then the BCM performs certain
restricted network procedure calls. These calls will fail
unless the BCM caller has already established himself as a
legitimate NSW process of class "FLPKG". Further details of
this mode of operation can be found in the section entitled
"SPECIAL REQUIREMENTS FOR NETWORK COPIES".

lwm 1111111 111 11111a ll 111

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 7

3.1.5. BCM FILES

The BC?'s actual input and output streams may require the allocation
of files named INPUT (the input stream), WSPOUT (the primary output
stream), and NSWOUT (the secondary output stream). Other functions
use files named SYSPRINT (PL/I diagnostics), MSGJOUR (optional
journaling output), and PARNS (optional parameters -- see the
section entitled FPINIT -- ALTER DEFAULT VALUES).

U

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 8

3.2. BCM USER'S MANUAL

This section is addressed to the BCM user -- that is, to the

programmer who is writing a program to call the BCM.

3.2.1. CALLING THE BCM

Conceptually, the BCM is called as:

BCM (input file description,
primary output file description,
secondary output file description,
environment description,
default values table)

--> (error description,
primary output data set description,
secondary output data set description)

The actual PL/I call looks like this:

DECLARE FPCOPY ENTRY (POINTER, POINTER, POINTER, POINTER);
CALL FPCOPY (ADDR (environmentdescriptor),

ADDR (inputfile descriptor),
ADDR (primaryoutputfiledescriptor),
ADDR (secondaryoutput_filedescriptor));

%INCLUDE source-library (DDFAULT);

where results are returned in descriptors, and the "default values
table" is provided as a static external data structure. The
descriptors are described in the next sections. I

i.6

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM'

PAGE 9

Figure 2: The 1CM Data Region Descriptor

3 REC CONTROL, /* POINTS TO CURRENT REC. *
4 (TfEXTAD KEYAD) POINTER,
4 (LNGTEXT, LNGKEY, SKIPS) FIXED BIN(iS),

3 FILENAME CHAR(8) VAR, /* DDNAME, TITLE OPTION. *
3 REALFILE FILE, /* POINTS TO FILE CONSTANT *
3 PCD,

4 HOST,
5 NUMBER FIXED BIN(15), 1* NETWORK HOST ADDRESS. *
5 NAME CHAR(32) VAR, /* HOST MNEMONIC NAME. *
5 FAMILY CHAR(32) VAR, /* HOST FAMILY NAME. *
5 RELATION FIXED BIN(1S), 1* LOCAL, FAMILY, FOREIGN *

4 DIRECTORY CHAR(56) VAR, /* FIRST PART OF NAME. *
4 FNAME CHAR(56) VAR, /* SECOND PART OF NAME. *
4 PHYS POINTER, /* PHYSICAL ENCODE. INFO. *
4 IL ENCODED BIT(1), 1* TRUE -- > COPY IN IL. *

3 FUD, 1* FILE USAGE DESCR: *
4 APPROX BIT COUNT FIXED BIN(31), /* TOTAL IL SIZE. *
4 ACTUAL BLOCKSIZE FIXED DIN(iS), /* TO BE USED *
4 BUFFERSIZE FIXED BIN(iS), /* FOR ALLOCATION. *
4 PASSWORD CHAR(32) VAR, /* ACCESS PASSWORD *
4 DSNAME CHAR(56) VAR, 1* FULL DATA SET NAME. *
4 USAGE FIXED BIN(15)2, /* OLD OR NEW *

3 GLOBAL TYPE CHAR(32) VAR, 1* GLOBAL TYPE NAME *
3 TYPE DESCRIPTOR,
4 TiPE-TYPE FIXED BIN(15), /* NATIVE/FAMILY/FOREIGN *
4 GFDg /* GLOBAL FILE DESCR: *
5 CLASS FIXED BIN(15), /* 1-->TEXT, 2-->BINARY. *
5 KEYLENGTH FIXED BIN(15), /* 0 -- > NO KEYS. *
5 DIMENSION FIXED BIN(15), 1* 1 TO 4. *
5 BYTESIZE FIXED BIN(15), /* USUALLY 8 .. *
5 HTAB, /* HORIZONTAL TABS... *

6 (ILCHAR, EBCCI{AR) CHAR~i),
6 (INCREMENT, STOPCOUNT, STOPS(20)) FIXED BIN(15),

5 VTAB, /* VERTICAL TABS... *
6 (ILCEAR, EBCCHAR) CHAR~i),
6 (INCREMENT, STOPCOUNT, STOPS(20)) FIXED DIN(15),

5 LF, /* LINEFEED... *
6 (ILCEAR, EBCCHAR) CHARl),
6 (INCREMENT, STOPCOUNT, STOPS(20)) FIXED BIN(15),

5 FY, /* FORMFEED... *
6 (ILCHAR, EBCCHAR) CHAR~i),
6 (INCREMENT, STOPCOUNT, STOPS(20)) FIXED BIN(iS),

(Continued)

............

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 10

Figure 2 (continued): The BCM Data Region Descriptor

4 LFD, /* LOCAL FILE DESCR: */
5 DIMENSIONALPREFERENCE (4) FIXED BIN(15),
5 TEXTLNG,
6 (MAX, MIN) FIXED BIN(15),

5 COMP FACTOR FIXED BIN(15),
5 KEY OFFSET FIXED BIN(15),
5 FOIDMARGIN FIXED BIN(15),
5 PAGE DEPTH FIXED BIN(15),
5 HANDLINGOF,

6 (KEYS, LONG_RECORDS, SHORTRECORDS, LONG-PAGES,
SHORTPAGES, HTAB, VTAB, IF, FF, BSP, CR) FIXED BIN(15),

5 OPTIONS,
6 (FORCEUPPER, SUPPRESSTRANSLATE, SUPPRESSEXPAND,

KEEP FILLS, INPUTONLY) BIT(l) ALIGNED,
4 PSD, /* DEFAULT PHYS STRUCTS. */
5 DSORG CHAR(6) VAR, /* DATA SET ORGANIZATION. */
5 RECFM CHAR(6) VAR, /* RECORD FORMAT. */
5 OPTCD CHAR(6) VAR, /* OPTION CODES. */
5 LRECL FIXED BIN(15), /* LOGICAL RECORD LENGTH. */
5 BLKSIZE, /* BLOCKSIZE. */
6 (MAX, MIN) FIXED BIN(15),

5 KEYLEN FIXED BIN(15), /* RECORDED KEY LENGTH. */
5 RKP FIXED BIN(15), /* RECORDED KEY OFFSET. */
5 SPACE ALLOCATION,
6 (PRIMARY, SECONDARY, PDSDIR) FIXED BIN(15),

3 VOLUME CHAR(6) VAR, /* FOR CREATING NEW DS'S. */

Ii "'.6

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 11

3.2.1.1. BUILDING THE INPUT FILE DESCRIPTOR

The BCM input file descriptor is one of the BCM "Data Region
Descriptors", as defined by %INCLUDE segment DDFILE and
illustrated in Figure 2. This structure is used both as input
parameters and as internal working storage by the BCM. Which
fields must be preset by the caller depends on whether the input
is remote or local.

3.2.1.1.1. FOR LOCAL INPUT

* HOST.RELATION -- Set to zero (the local system).

" DIRECTORY and FNAME -- These two fields, when concatenated

with a period between them, form the local DSNAME, which must
be fully qualified, but not quoted, and without a member name
or generation number. The data set thus identified must
already exist. Neither field should be blank or null.

* IL ENCODED -- Set this bit to '0'B unless the input file is

already encoded in NSW IL compressed form. ,

* GLOBAL TYPE -- Set this to one of the NSW GFT names. Since
this is a local file, this string will normally begin with
"360-".

* GLOBALTYPEDESCRIPTOR -- Set this entire substructure by

calling routine FPDGTYP (see the section entitled USEFUL
SUPPORT ROUTINES), passing the address of the entire file
descriptor. Field GLOBAL-TYPE must have been already set
before calling FPDGTYP. If the value of GLOBAL TYPE does not
begin with "360-", then follow the instructions for remote
input files, just below.

PASSWORD -- Processing of this field is deferred for now. Set
it to a null string.

I

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 12

3.2.1.1.2. FOR REMOTE INPUT

If the BCM caller is dealing with a remote input file, it is
assumed that he has access to the NSW data structures normally
used to describe such files.

* HOST.NUMBER, .DIRECTORY, .FNAME, .PHYS, and .ILENCODED -- Set
these fields directly from the PCD of the remote file copy
selected.

* HOST.NAME and .FAMILY -- These fields are only used to format
error messages, and they can be set to null strings. You can
set them more aesthetically by calling routine MSGHTYP (see
the section entitled USEFUL SUPPORT ROUTINES), passing
HOST.NUMBER.

* HOST.RELATION -- Set this to 1 (family host) if the remote
host is another 360-compatible system, or to 2 (foreign host)
otherwise. If you have called routine MSGHTYP, you can look
for the string "360" in field HOST.FAMILY to decide this.
When in doubt, it is safe to assume a foreign host type.

* PASSWORD -- Set this field to whatever text string serves as a
security key to permit access to the remote file. If the
remote system does not use passwords, set this field to a null
string. In normal File Package operation, this datum will
have been given the File Package by its caller.

* GLOBALTYPE -- Set this to the NSW GFT name associated with
the remote file copy.

* GLOBAL TYPE DESCRIPTOR -- Set this entire structure by calling

routine FPDGTYP (see the section entitled USEFUL SUPPORT
ROUTINES), passing the address of the entiri file descriptor.
field GLOBAL TYPE must have been already set before calling
FPDGTYP. If the string in GLOBAL TYPE does not begin "360-",
then you must also set all values of substructure GFD (either
before or after calling FPDGTYP). Most of these fields can be
copied directly from the GFD of the NSW file being accessed.
The exceptions are the four fields named EBCCHAR. These
should contain the EBCDIC codes for Tab (decimal 5), Vertical
Tab (11), Line Feed (37), and Form Feed (12). If you must
generate GFD information yourself, see the section entitled
DEFINING FILE ATTRIBUTES for assistance.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 13

3.2.1.2. BUILDING THE PRIMARY OUTPUT FILE DESCRIPTOR

The BCM primary output file descriptor is one of the BCM "Data
Region Descriptors", as defined by %INCLUDE segment DDFILE and
illustrated in figure 2. This structure is used both as input and
output parameters and as internal working storage by the BCM.
Which fields must be preset by the caller depends on whether the
primary output is remote, local, or null.

3.2.1.2.1. FOR LOCAL PRIMARY OUTPUT

* USAGE -- set to 3 (a transformed output file).

* HOST.RELATION -- Set to zero (the local system).

* DIRECTORY and FNAME -- These two fields, when concatenated
with a period between them, form the local DSNAME, which must
be fully qualified, but not quoted, and without a member name
or generation number. If DIRECTORY is null, the value of
WSP DIRECTORY in the default values table will be used. If
FNAME is null, the value of WSPDSNPAT in the defalut values
table will be used. However it is generated, the resulting
DSNAME may contain up to 7 "?" characters. These will be
replaced by pseudo-randomly chosen alphanumeric (not
alphabetic) characters to generate a unique name (different
substitutions will be tried until the generated name does not
match any existing data set).

If the data set name contains wild characters, and if every
possible substitution for those characters yeilds a name which
matches that of an existing data set, then the copy operation
will fail. However, if the name does not contain wild
characters, and if a data set of that name already exists, the
BCM will delete the old copy and recreate it according to the
attributes associated with this copy operation.

" IL ENCODED -- Set to 'O'B unless the primary output file is to
be encoded in NSW IL compressed form.

* GLOBAL TYPE -- Set this to one of the NSW GFT names. Unless
ILENCODED is '1'B, the name chosen must begin with "360-".

* GLOBAL TYPE DESCRIPTOR -- Set this entire structure by calling
routine FPDGTYP, passing the address of the entire file
descriptor. Field GLOBAL TYPE must be already set before
calling FPDGTYP. If the value of GLOBAL TYPE does not begin
with "360-", then follow the instructions- below for remote
output files.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: 1CM

PAGE 14

*PASSWORD -- Processing of this field is deferred for now. Set
it to a null string.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 15

3.2.1.2.2. FOR REMOTE PRIMARY OUTPUT

If the SCM caller is dealing with a remote primary output file,
it is assumed that he has access to the NSW data structures
normally used to describe such files.

*USAGE -- set this field to 3 to indicate a transformed output
file.

* HOST.NUMBER -- Set this field to the NSW host number of the
remote host. Normally, this will have been learned from an
incoming FP-SENDME call from that host.

HOST.NAME and .FAMILY -- These fields are only used to format
error messages, and they can be set to null strings. You can
set them more aesthetically by calling routine MSGHTYP (see
the section entitled USEFUL SUPPORT ROUTINES), passing
MOST. NUMBER.

NOST.RZLATION -- Set this to 1 (family host) if the remote
host is another 360-compatible system, or to 2 (foreign host)
otherwise. If you have called routine MSGHTYP, you can look
for the string "360" in field HOST.FANILY to decide this.
When in doubt, it is safe to asum a foreign host type.

PASSWORD -- Set this field to whatever text string serves as a
security key to permit access to the remote file. If the
remote system does not use passwords, set this field to a null
string. In normal File Package operation, this datum will
have been given the File Package by its caller.

* GLOAL -TP -- Set this to the NSW GFr name to be associated
with the remote file copy.

* GLOBAL TYE DUCRIPTOR -- Set this entire structure by calling
routime FPFY9 P (see the section entitled USEFUL SUPPORT
NO=TINIS), passing the address of the entire file descriptor.
Field GLOSAL -TYP mast have been already set before calling
71911? If the string in GLOBAL TYPE does not begin "360-",
them you mast also set all values of substructure GFD (either
before or after calling FPDGTYP). Most of these fields can be
copied directly from the GFD of the NSW file being accessed.
The exceptions are the four fields named EICCHAR. These
should contain the IUCDIC codes for Tab (decimal 5), Vertical
Tab (11), Line Feed (37), and Form Feed (12). If you must
generate GYP information yourself, see the section entitled
D1I1ING FILK AT rUIUKFS for assistance.

L

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 16

* ILENCODED -- Set this bit to '1'B.

3.2.1.2.3. FOR NULL PRIMARY OUTPUT

If no primary output is desired, simply set USAGE to zero (null
usage).

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 17

3.2.1.3. BUILDING THE SECONDARY OUTPUT FILE DESCRIPTOR

The BCM secondary output file descriptor is one of the BCM "Data
Region Descriptors", as defined by %INCLUDE segment DDFILE and
illustrated in figure 2. This structure is used both as input and
output parameters and as internal working storage by the BCM. The
output must be either null or to a local data set.

3.2.1.3.1. FOR LOCAL SECONDARY OUTPUT

* USAGE -- set this field to 2 to indicate an untransformed copy

of the input file.

* HOST.RELATION -- Set to zero to indicate the local system.

* DIRECTORY and FNAME -- These two fields, when concatenated
with a period between them, form the local DSNAHE, which must
be fully qualified, but not quoted, and without a member name
or generation number. If DIRECTORY is null, the value of
NSW DIRECTORY in the default values table will be used. If
FNAME is null, the value of NSW DSN PAT in the defalut values
table will be used. However it is generated, the resulting
DSNAME may contain up to 7 "?" characters. These will be
replaced by pseudo-randomly chosen alphanumeric (not
alphabetic) characters to generate a unique name (different
substitutions will be tried until the generated name does not
match any existing data set).

If the data set name contains wild characters, and if every
possible substitution for those characters yeilds a name which
matches that of an existing data set, then the copy operation
will fail. However, if the name does not contain wild
characters, and if a data set of that name already exists, the
BCM will delete the old copy and recreate it according to the
attributes associated with this copy operation.

* IL ENCODED -- Copy this datum from the input file descriptor.

* GLOBAL TYPE and GLOBAL TYPE DESCRIPTOR -- Copy these data from
the input file descriptor. -

* PASSWORD -- Processing of this field is deferred for now. Set
it to a null string.

3.2.1.3.2. FOR NULL SECONDARY OUTPUT

If no secondary output is desired, simply set USAGE to zero
(null usage).

hi

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 18

3.2.1.4. BUILDING THE ENVIRONMENT DESCRIPTOR

The BCM Environment Descriptor is a structure of the form defined
by %INCLUDE segment DDPCPFMT and illustrated in Figure 3. The
primary purpose of this descriptor is to communicate the status of
the NSW Procedure Call Protocol (PCP) environment (reference 5) to
those portions of the BCM which must do network communications.
It is also used to communicate an error code and string back to
the BCM caller. Only the latter function is of concern if the
copy is to be local.

3.2.1.4.1. FOR LOCAL COPY OPERATIONS

If the BCM is operating only on local datasets, only two fields
are of concern.

* ERRORTYPE -- preset this field to zero.

* ERROR-STRING -- preset this field to a null string.

3.2.1.4.2. FOR NETWORK COPY OPERATIONS

If the BCM is operating on any remote file, then the caller must
be using the PL/PCP package (reference 5).

* MASTER ECB -- this word must have been passed to PCBEGIN as
the PCP master ECB.

* LOCAL PROCESS -- Store the local process handle returned from
PCBEGIN here.

* CALLER -- Store the process handle of the calling process

here.

* CALL -- Store the transaction handle of the call being

executed here.

* ERROR-TYPE -- preset this field to zero.

* ERROR STRING -- preset this field to a null string.

1
A1

Supporting the IBM File System in NSW
FJovember 20, 1980 -- Part III: 3CM

PAGE 19

Figure 3: The BCN Environment Descriptor

2 MASTER ECB FIXED BINARY(31), /* FOR TPEXAM CALLS
2 W)CAL PROCESS POINTER, /* TO A PROCESS STRUCTURE *
2 CALLER POINTER, /* TO REMOTE PROCESS STRUCT *
2 CALL POINTER, /* TO T RAN SACTION STRUCURE *
2 CALL TYPE CHAR(6), /* FROM TPEXAM *
2 TERN RECEIVED BIT(1), /* NSG'S 'ITS" SETS THIS
2 ERROR TYPE FIXED 311(15), /* FROM "FPERRNO" *
2 REPLY TING CKAR(255) VAR, /* PROCEDURE RESULTS
2 ERROR STRING CHAR(255) VAR, /* ONLY VARIABLE PART...
2 VORKB-8, /* PL/B8 WORK AREA & RC *

3 B8 RETURNCODE FIXED BIN(31),
3 W0ORKAREA (35) FIXED BIN(31);

Figure 4: The 3CM Default Values Table

DECLARE 1 DDFAULT STATIC EXTERNAL,
2 MSG TIMEOUT FIXED DINARY(31) INIT (60000),
2 PC? TIMEUT FIXED DINARY(31) INIT (1800000),
2 IMP -TIMEOU FIXED DINARY(31) .INIT (60000),
2 KAXCOPIES FIXED DIN (15) INIT (1),
2 IWOIATERS FIED DIN (15) INIT (1),
2 Mff ADJUSTMENT FIXED UIN(15,4) INIT(S.0),
2 MAX ILKSIZE FIXED BIN(l5) INIT(7294),
2 WIN ILKSIZE FIXED BIN(15) INIT(1000),
2 MXI TRANS FIXED IIN(15) INIT(7286),
2 (NCV DIRECTORY INIT('ANA179.NSW'),
N3D68N PAT INIT('GEN.NSW?????'),
VSP7DIRECTORY INIT('hJA179.NSW'),
VS?-DSN-PAT INIT('GBN.WSP????'))

CMAR44)VAR,
2 GKNENICNAIE CHAR(16) VAR INIT('FLPKG'),
2 NSWVOL CKAR(6) INIT('NSWPl'),
2 WSPVOL CKAR(6) INIT('NSVPO1'),
2 VERIFY-IMPORT DIT(1) INIT(03);

omS

Supporting the IBM File System in NSV
November 20, 1980 -- Part III: BCM

PAGE 20

3.2.1.5. BUILDING THE DEFAULT VALUES TABLE

The BCM Default Values Table is a structure of the form defined by
IINCLUDE segment DDFAULT and illustrated in Figure 4. You must
include this structure somewhere in the load module that calls the
BCM. UINCLUDE segment DDFAULT will set default values in the
structure; however, your program can alter any of these prior to
calling the BCM. You can also call routine FPINIT (see the
section entitled USEFUL SUPPORT ROUTINES), which will execute a
"GET DATA" on the entire structure, thus allowing execute-time
changes by the program user. The structure is designed to provide
default values for the NSW File Package program, so many of the
fields are not used by the BCX. Those which are are:

" PCP TIMEOUT -- If the BCM must issue an FP-SENDME call to

another network host, this value is used for the PCCALL timeout.

" MAX BLKSIZE and MIN BLKSIZE -- These values are used as the

bounds in selectiTn a device-dependent block size for a local
output data set to hold IL compressed data.

" MAX ILTRNS -- The maximum length of a network transmission

block.

* NSW DIRECTORY -- The string to be used if the DIRECTORY field of
the secondary output descriptor is null.

* NSW DSN PAT -- The string to be used if the FNAME field of the
secondary output descriptor is null. This should contain at
least one, but not more than seven, "?" characters.

" WSPDIRECTORY -- The string to be used if the DIRECTORY field of

the primary output descriptor is null.

* WSP DIN PAT -- The string to be used if the FNANE field of the
primary output descriptor is null. This should contain at least
one, but not more than seven, "?" characters.

" NOW VOLUI -- The nme of the local filespace volume on which
secondary output data sets are to be created.

" VSP VOLh E -- The name of the local filespace volume on which
primary output data sets are to be created.

Lm

Supporting the IBM File System in NSW
Novembpr 20, 1980 -- Part III: BCM

PAGE 21

Figure 5: BCM Error Codes

type: string: meaning:

0 - No error.
4 -One of the BCM File Descriptors is invalid

or inconsistent.

9 -- An internal error has prevented the encoding
of a network message -- a BCH bug is probably
indicated.

14 An I/0 error occurred in reading or writing
one of the BCM files. Network and local
device errors are treated the same.

15 The BCM is transmitting a file already
encoded in IL to a remote host. A record
in the input file is longer than the value
of MAX IL TRANS in the Default Values
Table.

16 GFT name A record to be transformed in to the
indicated GFT format has a data portion
greater than LFDTXTLNG.MAX, and the
value of LFD.HANDLING OF.LONGRECORDS
indicates that this is an error.

17 GFT name The input file does not have keys, and
the output GFT indicates in field
LFD.KHANDLING OF.KEYS that the output
file must have non-generated keys.

19 DSNAME AL, output file descriptor specifies
values of DIRECTORY and FNAME that
map into the name of an existing data
set. If there are "?" characters in
the name, all possible permutations
and combinations of alphanumeric
substituends yeild such duplicate
names.

21 DSNAME An I/O error occurred during data set
creation.

22 DSNAME There is no file space which both has
sufficient room to creat the output
data set, and is legally accessible by
the File Package.

23 DSNAMZ An unknown error occurred during data
set creation.

(Continued)

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 22

Figure 5 (Continued): BCM Error Codes

26 Host name The BCM is negotiating with the remote
host which owns its input file. The
negotiating network transaction failed,
probably due to a timeout as specified by
PCP TIMEOUT or MSGTIMEOUT of the Default
Values Table.

27 The BCM is negotiating with the remote
host which owns its input file. That
host has returned an unintelligible
message.

28 The network connection to a remote host
cannot be opened by PL/MSG. If the
PL/MSG LOG option is being used, the
messages written to file MSGJOUR may
have more information.

29 The network connection to a remote host
cannot be closed by PL/MSG. If the
PL/MSG LOG option is being used, the
messages written to file MSGJOUR may
have more information.

''I~~ '' -0

Lg

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 23

3.2.1.6. RETRIEVING BCM RETURNED VALUES

The BCM returns values in several places in its parameter
structures:

3.2.1.6.1. PRIMARY ERROR CODE

Field ERROR-TYPE of the Envirnonment descriptor will contain
zero if the copy completed normally, and non-zero otherwise.
Field ERROR STRING will be either null or a string suitable for
inserting into an error message. Figure 5 lists possible error
codes, their meanings, and suggested error messages with
insertion points for the variable string.

3.2.1.6.2. GENERATED DATA SET DESCRIPTORS

If no error occurred, the primary and secondary output file
descriptors will have certain fields filled in to describe any
local data sets actually created from within the BCM. Note that
if you fool the BCM into thinking that it has created a data set
when the data set was actually created previously, these values
will be meaningless. See the section entitled FMNULL --
BYPASSING PLIDAIR for more information on this mode of
operation.

* DSNAME -- This field will contain the fully qualified, quoted,
data set name actually assigned the output data set. All "?"
characters will have been replaced by alphanumerics.

* ACTUALBLKSIZE -- This field will contain the block size

actually selected for the data set.

* PSD -- All subfields of this substructure except for the
BLKSIZE substructure indicate the actual values used to create
the data set.

- l

I A.-

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 24

3.2.2. USEFUL SUPPORT ROUTINES

Several routines of various NSW-related packages can be used by the
BCM caller to some advantage:

3.2.2.1. FPDGTYP -- DEFINE GLOBAL TYPE

Routine FPDGTYP fills in substructure TYPEDESCRIPTOR based on the
value of field GLOBALTYPE (see Figure 2). It is called by:

DECLARE FPDGTYP ENTRY (POINTER, FIXED BIN (15));
CALL FPDGTYP (ADDR (file-descriptor), errorcode);

where:

"file descriptor" is a BCH "Data Region Descriptor", as defined
by %INCLUDE segment DDFILE and illustrated in Figure 2. Field
GLOBALTYPE must already be filled in.

"error-code" is returned as zero after a normal operation or as
non-zero if GLOBALTYPE contained a native but unknown GTF
name.

Three cases exist:

(1) If "error code" is non-zero, then the GFT is illegal.
nothing else will have been filled in.

(2) If "error code" is zero and field TYPE TYPE is zero, then
the GFT- is a known native type,- and all fields of
TYPEDESCRIPTOR have been filled in.

(2) If "error code" is zero and field TYPE TYPE is non-zero,
then the GFT is an unknown type, and has been assummed to be
valid but non-native. Substructure GFD has not been
altered, and the rest of TYPE DESCRIPTOR has been filled in
with values that describe the preferred method of storing
non-native IL-encoded data sets on the 360 system. Before
calling the BCH, you must fill in all values of GFD (either
before or after calling FPDGTYP). In the normal
network-transfer case, the BCM caller will already be
holding GFD data received from his caller. For other cases,
refer to the section entitled DEFINING FILE ATTRIBUTES for
assistance.

a. .

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 25

FPDGTYP uses File Package subroutines FPERRNO and FPGTTAB.
FPGTTAB is loaded dynamically, so it must be made available
through one of the mechanisms available to program fetch
(previously loaded, Linkpack, Linklib, JOBLIB, STEPLIB, Task
library, etc.).

I
a

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 26

3.2.2.2. FPINIT -- ALTER DEFAULT VALUES

Routine FPDGTYP can be called to allow modification of the default
values table by the program user. It is called by:

DECLARE FPINIT ENTRY (FILE, *),
PARMS STREAM INPUT FILE;

%INCLUDE source library (DDFAULT);
CALL FPDGTYP (PARMS, DDFAULT);

FPINIT issues a "GET DATA" against its input file, which it opens
to file name PARMS, and its input structure, which it calls P.
Thus an example of valid file input to FPINIT might be:

//PARMS DD *
P.PCP TIMEOUT = 40000,
P.WSPVOL - 'WKSPC2'

FPINIT will function normally with or without the semicolon
normally used to terminate data-directed input. It will act as a
no-operation routine if no PARMS file is allocated.

' p!

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 30

(2) Binary-class data is of dimensionality 1 or 2, representing
either a single byte string or a sequence of (short) byte
strings called "records", respectively. There are no format
effectors other than record separators. In two-dimensional
data, a record say include a character-string key as well as
the binary text.

For binary-class data, the "fill" character used for optimum
compression in IL is a byte of binary zero.

, GFD.EYLENGTH -- This field declares the width of the key (or

sequence number) field associated with each data record. A value
of sero mans that no key field exists. Keys are always character
strings, even in binary-class files.

* GFD.DIHKNSION -- This field declares the file data to represent 1,

2, 3, or 4 dimensions. This concept is defined as follows:

(1) (At this writing, the BCH does not yet support
one-dimensional files.) One-dimensional data consists of a
atrem of bytes (or characters) that are not logically
grouped into lines or records. The single dimension
corresponds to file size, and is effectively unbounded.

(l m I c , c= 1 to file-size)

For character-class files, regular horizontal format
effectors (see Figure 2) are possible, but no other format
effectors would be meaningful. The data may be broken
arbitrarily into record-like strings for convenience in
handling, but it is understood that these strings are not
logical records. A one-dimensional file cannot have keys.

(2) To-dimensional data consists of a stream of bytes (or
characters) divided into records or lines. Keys are
permitted, and if they appear there is a key included with
each record. The first dimension is bounded by the "Record
Length Range" datum of the LFD, but the second corresponds
to file size, and is effectively unbounded.

(KEY [k, r 1, BYTE [c, r],

for: ca I to max-record-text-length,
k- I to key-width,
r= 1 to record-count, }

For character-class files, it is possible to define any kind
of regular horizontal format effectors and regular vertical
interval format effectors, but no other kinds are
meaningful.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: PI'H

PAGE 31

(3) Three-dimensional data consists of a stream of characters,
grouped into lines, which are then grouped into pages. The
first dimension is bounded by the "Record Length Range"
datum of the LFD, and the second by the "page depth" datum,
but the third corresponds to file size, and is effectively
unbounded.

(KEY [k, r, p 1, BYTE (c, r, p,

for: ca 1 to max-record-text-length,
k- 1 to key-width,
r- I to page-depth,
p- 1 to page-count }

Only character-class data can be three-dimensional, and it
is meaningful to define all regular format effectors. Keys
are legal, but will probably be rare.

(4) Four-dimensional data consists of a stream of characters,
grouped into records, which are then grouped into lines,
which an then be grouped into pages. The first dimension
is bounded by the "Record Length Range" datum of the LFD,
and the second corresponds to overprinting and is unbounded.
The third dimension is bounded by "page depth", while the
fourth corresponds to file size and is also unbounded.

(KEY I k, r, 1, p I, BYTE [c, r, 1, p I,

for: c= I to max-record-text-length,
k- 1 to key-width,
ru 1 to max-overprint-depth,
1- 1 to page-depth,
p- I to page-count)

Only text-class data can be four-dimensional, and it is
meaningful to define all regular and irregular format
effectors. Keys are legal, but will probably be rare.

I

* GFD.BYTESIZE -- The BCH can only process files consisting of 8-bit

bytes, so this datum should be set to 8.

* GFD.HTAB, .VTAB, .LF, and .FF -- These substructures tell the BCM

how to expand the ASCII-type format effectors that can be
expressed in IL-compressed text. Whether these instructions are
used at all depends on the settings of switches in substructure
LFD.HANDLING OF, described later.

lot

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 38

3.2.4. SPECIAL REQUIREMENTS FOR NETWORK COPIES

In order to use the BCM for network operations, the caller must be
familiar with the operation of an NSW File Package, and with the
mechanisms for implementing such a process at UCLA. He must have
already materialized an MSG process of class "FLPKG", using the
PL/PCP subroutine package (reference 5). The BCM environment
descriptor must accurately describe the PL/PCP environment (see the
section entitled BUILDING THE ENVIRONMENT DESCRIPTOR).

If the BCM input is remote, then the BCM will invoke procedure
FP-SENDME of any FLPKG process on the indicated remote host, using
routines PCCALL and PCEXAM.

If the BCM primary output is remote, then the BCM will assume that
its caller is responding to an FP-SENDME procedure call from the
indicated remote host, and that field CALL of the environment
descriptor is a handle on that transaction. The BCM will then
complete the transaction using routine PCREPLY.

Theoretically, the BCM can copy a remote input file to a remote
output file; however, such a request is never generated in the NSW
system, so in practice, it will not be explicitly supported.

w

Supporting the IBM File System in NSW
November 20, 1980 Part III: BCK

PAGE 40

Figure 6: 3CM Paramterization Switches

* LOCAGET * * NETWORK GET *

A t*Ao %# %*k * *a aaa -"a"AAAAA .A~AAAAA.LJ.J.AJ..,

(IL or CT) I I (IL or CT)
-------- >0 <> ...-------- *

I SOURCEISLOCAL switch

-----------.. 0 <*> 0 INPUTFORMATTINGTYPE switch

SV KEEPING AN NSWCOPY switch
NORMALIZER *-> 0--->

** I I
I (IL or CT)

(NT) I JJJJA.AA
* ----------------- >* * LOCAL PUT *

I**

0 <* WRITING AN OUTPUT switch

I OUTPUTFORMATTINGTYPE switch

----------------- 0 > 0 ------------------- >*
0*< .. 0 V 0 >*I

II 0 I I
I I I I

(IL) I (CT) I (IL) I (NT) I

* IL * IL * I IL * * NORMALIZED *
* EXPANDER * * COMPRESSER * * REBLOCKER * * TEXT*
* * * * I* * * EXPANDER *

(CT) V (IL) V V (IL) V (CT) V
------------- -------- >*< ------- *< ---------------

I (IL or CT)

t I f OUTPUT IS LOCAL switch
----------0 <> 0 ---------*
I I" i

, 2 A A A A A A A A A.A A. AAA;,AAAAAAAA

* LOCALPUT * * NETWORKPUT *

S.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 41

3.3.1.1. DATA ROUTING SWITCHES

These switches are concerned with getting data into and out of the
BCM. Their settings are primarily determined by the basic type of
copy operation being executed, and by the types of the external
data sets to be processed. These switches are:

* the SOURCEISLOCAL switch

* the KEEPZNGA SECONDARYCOPY switch

* the WRITINGANOUTPUT switch

* the OUTPUTISLOCAL switch

At the same time these switches are set, and based upon the same
parametric data, each data region is assigned a set of "file data
attributes".

3.3.1.2. DATA CONVERSION SWITCHES

These switches are concerned with moving data ,across data region
boundaries. Their settings are primarily determined by the
relationships between the file data attributes assigned the two
regions invloved. These switches are:

* the INPUT FORMATrINGTYPE switch

* the OUTPUT FORHATTINGTYPE switch

Conceptually, both of these switches can be set to perform any
type of data conversion; however, in the present implementation,
most potential values of the INPUT FORMATTING TYPE switch are
undefined. This results in the restriction that the data written
through the secondary output file must be an untranslated,
unrecoded copy of the input stream.

It must be understood that the switches described above are
abstractions for the purpose of describing the logic of the
machine. In fact, the functions of the switches are implemented
by a generator mechanism which dynamically binds an appropriate
subroutine into the machine at the point where the switch has its
effect. The BCM is a dynamically bound collection of routines,
consisting of a root or control routine and five slots to be
filled with one of a number of candidate processing modules (see
Figure 7). FPCOPY, the control routine which receives control
when the BCM is called, is responsible for the selection and
control of the other modules. From the values set in the three
file descriptors (discussed in the section entitled "CALLING THE
BCH"), FPCOPY is able to select five subroutines appropriate to

g

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 42

fill in the five variable slots for the particular invocation of
the BCH, and then to use these routines to set up a copy
operation, to perform the copy, and to clean up the entire
operation. BCH operation is thus composed of four phases:

* the Generator phase

* the Resource Allocation phase

* the Work phase

* the Resource Freeing phase

More will be said about these phases in a the section entitled
PROCESSING PHASES.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 43

Figure 7: The Generated Copy Machine:

Resource Work Resource
Allocation Entries: Freeing
Entries: Entries:

------------------ ---------- *---- --------------- *

GET I
COPYI (parametrically selected routine)I

F--con---------- ---------- *---- --------------- I
InitialII
Transform I (parametrically selected routine)
Copy Function I

*---------------------eeeeeeeeeeeeeeeeeeeeeeee

Secondary1I
PUT Copy I (parametrically selected routine)I
Functionj

---------- *---------- ------- *------- ------------ *

FinalII
Transform I (parametrically selected routine)I

Copy Function I
------------------ ---------- *---- --------------- *

Primary I
PUT Copy I (parametrically selected routine)I
FunctionII

------------------ ---------- *---- --------------- *

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE

3.3.2. DATA STRUCTURES

3.3.2.1. DATA RECORDS

There are three forms in which a data record can exist for the
purposes of the BCM.

3.3.2.1.1. FORMATTED CLEAR TEXT

Non-IL records are stored on a 360 disk in a format called
"formatted clear text", or simply "clear text". Interpretation
of a clear text record generally requires a full knowledge of
the Local File Attributes (LFA's) and Physical Storage
Attributes (PSA's) for its type; therefore, only records of a
360-native type can exist in clear text form.

A clear text record consists of a single string of bytes. If
the RECFM field of its LFD contains the letter "A", each record
will begin with a single byte of ASA carriage control; no other
type of format effector is defined. If the record has keys, the
key-length field of the GFD and the key,-offset of the LFD
together define a substring of the record which is the key; the
remaining bytes constitute the record text field.

3.3.2.1.2. NORMALIZED TEXT

Normalized Text is an IL-like internal representation for a
record which is used by FP/360 when converting from one type to
another. This representation consists of the triple:

(<skipcount>, <key>, <text>)

where,

* <skipcount> is the amount of vertical movement from the
preceding line to the current one; for example, zero means
that the current line is to overprint the preceding line.
There is also a reserved value of <skipcount> meaning "form
feed".

* <key> is the isolated key string; and

* <text> is a string containing the characters or bytes of the

text field less any insignificant trailing fill bytes.

A record in this representation may be considered to be
independent of any of the local host-specific mappings defined
by the LFA's and PSA's.

...........

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 45

3.3.2.1.3. IL TRANSMISSION BLOCKS

An IL Transmission Block (reference 2) is the form in which data
in moved between Network hosts of the NSW system. The block
consists of a string of transmission bytes of a specified bit
width (but the BCM will process only 8-bit bytes). This string
consists of a two-byte binary count field followed by the
indicated number of data bytes . The data bytes consist of a
catenation of data records, each containing an encodement of the
triple (<skipcount>, <key>, <text>). The encodement is such
that <skipcount> and <key> are easily extractable; however,
<text> is compressed according to the standard NSW data
compression grammar (reference 2), and its length can only be
determined by parsing in accord with that grmar.

11 M11

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 46

3.3.2.2. THE DATA REGION DESCRIPTOR

A file descriptor, or Data Region Descriptor, has a dual
personality, as can be seen from Figure 2. It represents the
characteristics of an actual input or output data set (local,
remote, or null) to which it is connected through one of the GET
or PUT Copy Functions. It also represents a set of internal data
characteristics which, together with another file descriptor to
which this one is connected through one of the TRANSFORMATION Copy
Functions, defines a set of data conversions for that Copy
Function to implement.
More specifically, the Data Region Descriptor contains information

of the following sorts:

* Descriptors of the current record residing in this Data Region.

* Descriptors of the PL/I FILE allocated to the GET or PUT
function associated with this Data Region.

* Descriptors of the Network file allocated to the GET or PUT
function associated with this Data Region.

* The "Global Type" name associated with the data as it is
represented when it passes through this region, along with an
expanded descriptor defining just what attributes that type name
implies.

Because of the great variability in the operations that may
actually go on in moving data into and out of a Data Region, the
Data Region Descriptor includes many data elements which will be
used only in specific cases. Still, there are always three full
descriptors attached to a BCM execution, regardless of the paucity
of relevant information that some of them may contain in some
cases. The generator phase of the BCM will associate with a Data
Region only those Copy Function routines which are compatible with
the information actually present in the region.

Note that the Data Region Descriptor does not include any actual
data record buffers, since the need for and size of these varies
widely according to the selected Copy Function routines.
Accordingly, buffers are managed by, and belong to, the Copy
Function subroutines themselves.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 47

3.3.2.2.1. FILE AND RECORD CONTROL

The following fields of the Data Region Descriptor (see Figure
2) are those that Copy Functions use to manipulate PL/I files
and data buffers. Except as noted, this means that the BCM
caller need not concern himself with them; their values before,
during, and after execution are not of interest to him.

* TEXTAD -- points to the data string which represents the

current data record associated with this Data Region
Descriptor, or, in the case of normalized internal form, to
the data portion of the record. This address may be null (or
invalid) when no such string exists.

* XEYAD -- the address of the extracted key field of a

normalized internal data record.

* UIGTEXT -- is the length of the current data string (if any)

pointed to by TEXTAD.

* LNGKEY -- is the length of the current key field (if any)

pointed to by KEYAD.

* SKIPS -- is an accumulator for the "skip count" component of a
normalized internal data record.

* FILENAME -- ddname used to allocate local files. Currently

the 1CM is hard-wired (in FPCOPY) to always use INPUT, NSWOUT,
and VSPOUT for the three possible files.

* REALFILE -- a PL/I FILE variable which is set to one of the

PL/I FILE constants INFILE, KPFILE, or OUTFILE. This is true
even if the associated file is a network file instead of a
local data set.

W

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 48

3.3.2.2.2. FILE USAGE DESCRIPTOR

The File Usage Descriptor contains data pertinent to this
particular access to the data:

APPROX BIT COUNT -- this value is used by the Resource

Allocation- Routine of the PUT Copy Function to allocate space
for a local output file. It is determined by the Resource
Allocation Routine of the GET Copy Function. If the input is
a local file, it is calculated from the number of track
extents allocated to the file, multiplied by the number of
blocks that fit on that track, multiplied by the number of
bits in a block of the file. If the input is from a foreign
host, the file size is passed as part of the initial NETWORK
connection to the Resource Allocation Routine, and the value
is simply stored.

AT present, this value remains constant for a particular copy
operation, even through IL translation. Once it is determined
for the input data region, the BCM control routine, FPCOPY, in
a breach of discipline, copies the value to both the secondary
and primary output data regions. To get the correct value for
local IL data sets, it should be multiplied by the compression
ratio during the Resource Allocation Routines of the translate
Copy Functions, but because it must be done by all translate
Resource Allocation Routines, and because a null routine is
used for the Resource Allocation Routine in some cases, FPCOPY
performs this function instead of a special routine which
would do nothing else. This should be corrected in a future
version.

* ACTUAL BLOCKSIZE -- this value is set to the actual blocksize
found in a local input file, or chosen for a local output
file.

* BUFFER SIZE -- the BUFFER SIZE is the length of any dynamic

buffer gotten for records in this data region. It is
determined and set by the Resource Allocation Routine of the
particular Copy Function that outputs into this region, and
used by the Resource Freeing Routine to free storage. The
value for local files is assigned from the LRECL field of the
PSD (LRECL-4 for files of RECFM=V). For data files at foreign
hosts, the BUFFER SIZE is simply the agreed-upon transmission
size, less 2 for the transmission control bytes.

* PASSWORD -- that data needed to gain access to the file on the
host. The BCM currently ignores this field for local files.
It will pass this value to foreign hosts for a NETWORK input
request.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 49

* DSNAME -- for non-local files, this field is ignored. For
local files, this is a concatenation of PCD.DIRECTORY and
PCD.FNAME, with a period between them, and with any "wild
characters" ("?") replaced by whatever alphanumerics can be
found to result in a unique ID for a local data set.

USAGE -- the type of I/0. Obviously, only certain values of

this datum are valid for certain files. At the present, the
BCM only looks at the value for the output files. The values
for USAGE are:

* 0 -- > "Dummy": the file represented by this Data Region
Descriptor is not to be read or written.

* 1 --> "Input": this Data Region Descriptor's file

exists and is to be read.

* 2 -- > "NSW": this Data Region Descriptor's file will be

written, and is to be created in the NSW File Space.

* 3 -- "Local": this Data Region Descriptor's file will

be written, but it is not to be created in the NSW File
Space.

Suppori Lng the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 50

Figure 8: The Function Control Area

2 PCP POINTER POINTER,
2 ALLOC RESOURCE ROUTINE ENTRY,
2 FREERESOURCE ROUTINE ENTRY,
2 WORKROUTINE ENTRY,
2 INPUT REGION POINTER,
2 OUTPUTREGION POINTER,
2 LOCALSTATUS,

3 HASLOCALLY INITIALIZED BIT(l) ALIGNED,
3 HAS LOCALLY FINALIZED BIT(l) ALIGNED,
3 HAS-BEEN -ALLATED BIT(l) ALIGNED,
3 HAS-TERMINATED BIT(l) ALIGNED,

2 GLOBALSTATUSPOINTER POINTER

Figure 9: The Connection Descriptor

2 CONREQ, /* DIRECT-CONNECTIONS... */
3 CTYPE CHAR(4),
3 CWIDTH FIXED BIN(15),
3 CID FIXED BIN(15),
3 CQDEPTH FIXED BIN(15),

2 CONCONTROL,
3 CONHANDLE POINTER,
3 CONCECB FIXED BIN(31),
3 CONOECB FIXED BIN(31),
3 CBPTR POINTER,
3 CBLENGTH FIXED BIN(15);

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 51

3.3.2.3. THE FUNCTION CONTROL AREA

The function control area is illustrated in Figure 8. It
represents one of the Copy Functions that move data into and out
of the data regions. The values of its data fields are determined
by FPCOPY based on the file and data characteristics of the
pertinent Data Region Descriptors. There are five Function
Control Areas, corresponding to the five Copy Functions (see
figure 7). Once they are initialized, FPCOPY can use the same
calling sequences for all possible BCM confiqurations, by using
the values of appropriate fields of the Function Control Area.
Those fields are:

* PCP POINTER -- this points to the environment descriptor passed

to the BCM by its caller. It is used to report error conditions
and is also used by the Network routines.

* ALLOC RESOURCE ROUTINE -- The address of the selected Resource

Allocation Routine.

* FREE RESOURCE ROUTINE -- The address of the selected Resource

Freeing Routine.

* WORK-ROUTINE -- The address of the selected Work Routine.

* INPUT REGION -- The address of the Data Region Descriptor from

which this Copy Function takes its input records. For the GET
Copy Function, this will be null.

* OUTPUT REGION The address of the Data Region Descriptor to which

this Copy Function gives its output records. For the PUT Copy
Functions, this will be null.

* LOCAL STATUS -- Status flags that communicate the Control

functlon's status between calls to it and between it and FPCOPY.
The bits are:

* HASLOCALLYINITIALIZED -- any initializations required on
the first entry to the Work Routine have been completed.

* HASLOCALLYFINALIZED -- the Work Routine has cleaned up

any local initializations and need not be called again.

* HASBEEN ALLOCATED -- the Resource Allocation Routine for
this Copy Function has successfully completed.

IN'

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 52

* HAS TERMINATED -- the output data of this invocation of
the Work Routine has exhausted the input. Implicit in
this status condition is a request for more input on the
next call. FPCOPY will attempt to satisfy this by calling
the previous Copy Function.

* GLOBAL STATUS POINTER -- the address of global status flags
referenced by all Copy Functions. The bits pointed to are:

* CLEAN UPNEEDED -- local Copy Function finalizations must

now be performed. This status flag is set only on the
last sequence of calls to the Work Routines. This flag is
set after any error or end-of-data condition has been
found and processed.

" COPYEOD -- the GET Copy Function has exhausted the input
data. Preliminary clean-up can be performed.

* TRANSMISSION ERROR -- an unrecoverable error has occurred
in either a GET or PUT Copy Function. The BCM is to be
aborted.

* TRANSLATION ERROR -- an unrecoverable error has occurred

in an EDIT Copy Function. The BCM is to be aborted.

* ALLOCATIONERROR -- a local Copy Function initialization

has failed. The BCM is to be aborted.

-

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 53

3.3.2.4. THE CONNECTION DESCRIPTORS

The two Connection Descriptors describe the two possible network
connections that may possibly be used instead of the PL/I FILEs
described in the Data Region Descriptors for the INPUT and OUTPUT
regions. These descriptors logically overlay those file
descriptors. They are not in the same control block only for
historical reasons. The format of a Connection Descriptor is
shown in Figure 9. We do not describe it in great detail here, as
it is only of interest when the BCM is used in the context of the
NSW File Package, and in that context it is self explanatory.

3.3.2.5. THE ENVIRONMENT DESCRIPTOR

The Environment Descriptor is illustrated in Figure 3, and
described in the section entitled "CALLING THE BCM".

3.3.2.6. THE DEFAULT VALUES TABLE

The Default Values Table is illustrated in Figure 4, and described
in the section entitled "CALLING THE BCM".

".

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 54

Figure 10: Basic Logic After Generation

WORK (i):
i IF i <6

THEN I UNTIL F(i).HAS.TERMINATED
I I I CALL F(i).WORK ROUTINE
I I I CALL WORK (i+1)

SETUP (i):
iIf i > 5

THEN CALL WORK (1)

ELSE CALL F(i) RESOURCEALLOCROUTINE
IF no errors

THEN I CALL SETUP (i+1)
I CALL F(i).RESOURCEFREEROUTINE

CALL SETUP (1)

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 55

3.3.3. PROCESSING PHASES

BCH operation consists of four phases: The Copy-Function Generator
phase, the Resource Allocation phase, the Work phase, and the
Resource Freeing phase. Usually, these phases are executed in turn;
however, at any time, in any subroutine of any Selectable Module, an
unrecoverable error may occur. If this happens, FPCOPY is notified,
an error message is generated, and FPCOPY initiates the proper
sequence of exiting calls, enabling all routines to accomplish their
needed de-allocations, before control is returned to the BCM caller.
The actual shape of the logic governing execution of the BCM after
generation is complete is illustrated in Figure 10.

3.3.3.1. THE GENERATOR PHASE

The five Copy Functions are represented by five Function Control
Areas (see Figures 7, 9). The Generator phase consists of
assigning Selectable Modules to each of these areas. This is done
by examining the values in each Data Region Descriptor and
selecting routines that are compatible with the file attributes
and required transformations. At the end of this phase, the
Function Control Areas have been initialized, ankd the machine has
the appearance shown in Figure 7.

3.3.3.2. THE RESOURCE ALLOCATION PHASE

The Resource Allocation phase consists of executing the selected
Resource Allocation routine indicated by each initialized Function
Control Area. These routines are executed in a well-defined
order, so that each can use information set by those preceding.

The functions of the Resource Allocation Routine of a Copy
Function are to set information in the associated data regions,
usually copying information from the input region to the output
region, to open files, and to allocate dynamic buffers where they
are indicated. The Resource Allocation Routine never processes
actual file data. If the Resource Allocation Routine completes
normally, its work will be undone by the related Resource Free
Routine. If it completes abnormally, it must perform its own
clean-up and indicate its failure. In such a case, FPCOPY will

skip directly to the Resource Freeing phase, beginning at the
point immediately after the return from the Resource Freeing

failed.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCH

PAGE 56

3.3.3.3. THE WORK PHASE

The Work phase copies the actual data records. It is executed
only if the Resource Allocation Phase completed successfully. It
consists of an iterated and structured sequence of calls to the
work routines of the Copy Functions in sequence. Each function is
called repeatedly until it indicates that it requires new input;
then its predecessor is called to supply that input. Likewise,
after each call to a function, if that call has produced output,
the successor function is called to dispose of that output. In
this way, each Copy Function can emit zero, one, or more output
records for each input record absorbed. This scheme is general
enough to encompass the management of routines that do various
kinds of blocking, deblocking, absorbing of null records, etc.

When a Work Routine is called, the input string pointed to by the

input Data Region Descriptor may be either:

* null (an invalid string pointer)

a new input string

the residue of the input string left from the previous call.

and when It exits, the input string is left as:

*null

* non-null, i.e. that portion of the original input string

which is not reflected in the Work Routine's output string.
If this is the case, the HAS TERMINATED flag in the Copy
Function's local status area will not be set and the Work
Routine will be called again by FPCOPY with this input.

The output of a Work Routine on exit is either:

* null

* non-null, a new string. There is no concatenation performed

on the output string pointed to by the output Data Region
Descriptor, although many input strings may be condensed and
stored in a buffer internal to the Work Routine itself. The
output string will be null for each absorbed input until a
complete output string is finally produced, completely
flushing the internal buffer.

The actual internal mechanics of a specific Work Routine,
particularly the translation operations, are highly dependent on
the given attributes of the input and output Data Region
Descriptors.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 57

When a Work Routine is first entered, initializations have already
been performed for the Copy Function by the Resource Allocation
Routine; however, some initializations local to the work routine
itself may need to be performed on the first entry. It is up to
the designer of a Selectable Module to determine what
initializations are massive enough to warrant inclusion in the
separate routine. The Work Routine performs any local
initialization and sets the local status flag,
HASLOCALLY-INITIALIZED. It is then able to continue its normal
operations. Note that during the final call to a Work Routine,
indicated by the global status flag, CLEAN UP NEEDED, the Work
Routine must undo all of its own initializations.

The Work Routine may encounter an end-of-data or error condition
during its own internal operations. If so, it sets the
appropriate global status flag, sets its output string to null,
and exits. When a Work Routine sets such a global flag, FPCOPY
will take appropriate action, including the setting of the global
status flag CLFANJUPNEEDED. FPCOPY then repeats the nested
calling of WORK routines one final time. Thus each Work Routine
needs only test the global flag CLEANUPNEEDED to determine if
this is his last opportunity to perform local buffer flushing and
finalization. Again, it is up to the designer of a Selectable
Module to determine which finalizations are local to the Work
Routine and which should be done in the Resource Freeing Routine.

3.3.3.4. THE RESOURCE FREEING PHASE

The Resource Freeing phase is entered after the Work phase is
either complete or bypassed. It consists of a sequence of calls
to the Resource Freeing routines of the Copy Functions.

The Resource Free Routine of a Copy Function is entered only if
the corresponding Resource Allocation Routine was entered and
completed successfully. This is independent of whether or not the
Work Routine(s) were ever executed. The routine frees dynamic
buffers, closes files, etc. Like the Resource Allocation Routine,
the Resource Free Routine never processes file data.

-

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 58

3.3.4. SELECTABLE MODULES

A Selectable Module is the entity which is assigned to a Copy

Function. The five Copy Functions are (see figure 7):

1) Input,

2) Initial transformation,

3) Secondary output,

4) Final transformation,

5) -Primary output.

Each Selectable Module is made up of three distinct subroutines,
corresponding to the three phases of the copy operation: Resource
Allocation, Work, and Resource Freeing. These entries are defined
to provide flexibility to the designer of a Selectable Module, who
may, for instance, have to work around severe main-storage
restrictions. Logically, though, they implement a single function,
and so the routines that comprise them must be treated together.

Every subroutine of every Selectable Module is called by FPCOPY with
the following:

CALL <function>. <phase-specific-entry-name>
(ADDR (<function-control-area>),
ADDR (<connection-control-block));

Because of the uniformity of these calls, it is possible to support
the entire range of BCH subroutine combinations with one set of
calls in FPCOPY (see figure 10). This is because the truly variable
parameters to the routines are reflected in the Copy Function
structure and in the Data Region Descriptors already.

3.3.4.1. TRANSFORMATIONAL COMPONENTS

Those components of the Basic Copy Machine which are responsible
for converting the format or content of file data will now be
described. In general, the source and target files have
attributes which may be the same or different. In the latter
case, the component implements conversion. Input records are not
checked for conformity to dimensional constraints, but output
records will always be correct. One exception must be noted: If
the Global File Type of the input and output of the 1CM are the
same, all transformational components are short-circuited, and no

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 59

attribute policing takes place.

3.3.4.1.1. NORMALIZER

The Normalizer component of the BCM accepts clear text records
and produces normalized text records. It do-formats its input
according to the input-LFD attributes. Skip counts are
generated from ASA carriage control, if present, and/or
completely null (text and key) records, or null records with
duplicate keys.

3.3.4.1.2. NORMALIZED TEXT EXPANDER

The Normalized Text Expander component accepts normalized text
records and produces clear text records. The output is
formatted according to the ouput-LFD attributes. Skip counts
are converted to ASA carriage control, if appropriate, and/or to
records with blank text fields and possible null or duplicate
keys.

3.3.4.1.3. IL COMPRESSOR

The IL Compressor accepts clear text records and produces
compressed IL records. Input is deformatted acuording to the
input-LFD attributes. Record controls are generated from ASA
carriage control, if present, and/or completely null records, or
null records with duplicate keys.

3.3.4.1.4. IL EXPANDER

The IL Expander accepts compressed IL records and produces clear
text records. Output is formatted according to the outpuf-LFD
attributes. Record controls are converted to ASA carriage
control, if appropriate, and/or to records with blank text
fields and possible null or duplicate keys.

3.3.4.1.5. IL REBLOCKER

The IL Reblocker will accept an IL transmission block and
produce one or more IL transmission blocks of a different
maximum transmission block size. This is required, for
instance, when copying an IL-encoded file to a remote file
package which cannot handle the blocksize in which the file
already exists.

In the present implementation, the IL Reblocker is present only
as a stub. This means that situations where reblocking might be
required will be legal, but if any overlong block is actually
encountered, it will be treated as an unrecoverable copy error. ri

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 60

Even in future versions, the BCM will never reblock IL to obtain
a larger block size. Since reblocking can only be done by
completely parsing all the compressed text, it is assumed that
the inefficiencies of handling small blocks are less than the
effort of reblocking. In fact, the reblocker will use the
simplest of possible algorithms:

* It will pass blocks that are already short enough straight

through.

* If, at a data record boundary during parsing of a long block,

the unparsed residue becomes short enough to be legal output,
the block will be broken at that point regardless of how short
the parsed portion may be.

* Otherwise, the first break of a block will occur at the last
IL record boundary before the one which would make the first
fragment too long.

* If none of these conditions can be met, (if there exists a
record longer than the IL blocksize) an error condition
exists, and the copy machine will abort the entire procedure.

3.3.4.1.6. THE NULL TRANSFORMATION

Whenever a transformational function bridges two data regions
with identical characteristics, so that no data editing is
indicated, FPCOPY selects a null transformational routine. This
routine merely copies the data pointers from its input region to
its output region.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 61

3.3.4.2. COPY MACHINE I/O COMPONENTS

The Basic Copy Machine has one input and two output streams.
These are controlled by dynamically-selected components. In
general, these components are not sensitive to the encodement of
the records, which may be formatted clear text or IL transmission
blocks. However, the present implementation will not support
Network transmission of clear text records, so the
Network-handling components will not be requested to process other
than IL transmission blocks.

3.3.4.2.1. THE LOCAL GET FUNCTION

The local get function is switched in when the copy machine's
input data comes from a local data set. The component's
responsibilities include:

* Locating and acquiring control over the input data set.

* Opening the data set.

* Filling in any PSA's that thus become known, particularly the

total filesize.

* Acquiring record buffers.

* Retrieving the data set's records sequentially until

nd-of-file.

* Releasing buffers.

* Closing and releasing the data set.

* Notifying the copy machine of any exceptional conditions that

arise.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 62

3.3.4.2.2. THE NETWORK GET FUNCTION

The Network get function is switched in when the copy machine's
input data comes from a remote file package. The component's
responsibilities include:

* The scheduling and completion of a SENDME procedure call,
directed to the selected remote NSW File Package. Most of the
arguments to this call were inputs to the procedure call that
the BCM is itself executing. Exceptions are:

1) The transmission bytesize is hardwired at 8 bits.

2) The maximum transmission record size is taken from the
Default Values Table.

3) The "family information" parameter will be of PL/B8 type
EMPTY to indicate that the transmission is to be in IL
transmission blocks.

Note: this is a restriction on the current
implementation; in subsequent versions, clear text may
be transmitted between 360 hosts.

" Recording the results of SENDME for later use by other
components. Of particular interest will be the total file
size.

* Opening a PL/MSG RECV connection (reference 3) according to
the negotiations agreed on during SENDME.

* Acquiring record buffers.

* Retrieving the file's blocks sequentially until either the
connection closes or some other component signals that an
encoded end-of-file has been found.

* Releasing buffers.

* Closing the connection.

* Notifying the copy machine and the other NSW File Package of
any exceptional conditions that arise.

Supporting the IBM File System in NSW
Nevember 20, 1980 -- Part III: BCM

PAGE 63

3.3.4.2.3. THE LOCAL PUT FUNCTION

The local put function is switched in when any of the copy
machine's output goes to a local data set. This is usually true
during the "import", "export", and "transport" procedures. If
two outputs are being produced, this component will be used
twice, but with different parameters. For instance, one may be
writing clear text and the other IL transmission blocks. In any
case, the component ' s responsibilities include:

* Creating the output data set, and acquiring control over it.
Notice that this may use size data saved by the selected GET
function. If the data set name is fully specified, and if a
data set of that name already exists, then the old copy will
be deleted.

* Opening the data set.

* Writing records sequentially until signaled by the copy
machine that no more remain.

* Closing and releasing the data set, or deleting it if there

was an error.

* Notifying the copy machine of any exceptional conditions that
arise.

3.3.4.2.4. THE NULL PUT FUNCTION

When one of the BCM's output streams is not to be produced,
FPCOPY selects a null PUT routine. This routine does
essentially nothing at all.

0 1-

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 64

3.3.4.2.5. THE NETWORK PUT FUNCTION

The Network put function is switched in when the copy machine's
primary output data goes to a remote host. This is the case
when the BCM is executing an NSW SENDNE procedure call. The
component's responsibilities include:

* Replying to the SEND procedure being executed. The following

data is returned:

1) The connection identifier is hardwired as 1.

2) The transmission bytesize is hardwired at 8 bits.

3) The actual IL transmission block size is the minimum of:
a) the size requested in the call; and b) a limiting
value taken from the Default Values Table.

4) The "family information" parameter will be of NSWB8 type
EMPTY to indicate that the transmission is to be in IL
transmission blocks.

Note: This is a restriction ,in the current
implementation; in subsequent versions, clear text
transmission may be supported between 360 family hosts.

* Opening a PL/MSG SEND connection according to the negotiations
agreed on.

* Transmitting the file's blocks sequentially until signaled by
the copy machine that no more remain.

* Transmitting an in-band ending status mark to the remote File
Package.

* Closing the connection.

" Notifying the copy machine of any exceptional conditions that

arise.

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 66

GFTr=360-BINARY,*
RECFM=VBS, (FB, yEA, ETC. ETC.)*
LRECL=O, (80, 121, 137, ETC.)*
DLKSIZE=(1,4000), ((MIN, MAX) OR FIXED)*
SPACE=(005 ,01) * (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC=60, (EST IL/DISK BYTES * 100) *
KOFFS=O, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN=1, (1 ORG, IN TEXT FIELD ONLY) *
DIM=2, (NATIVE DIMENSION)*
UC=N, FORCE UC: (YES, NO)*
KEYNDL=-N, (REQ, GEN, BLANK, NO)
WONGR=F, (TRUNCATE, FOLD; LONG RECS) *
INONLY=-N, (YES, NO)*
CLASS=B, (TEXT, BINARY)*
KPFILL=Y, (TRAIL FILLS ARE SIGNIF; Y, N)*
SUPRXI, (PERFORM CODE TRANS; Y, N) *
LNGKEYO0, (NOT IN THE DA SENSE)*
DIMl-FORBID, DIMENSIONAL PREFERENCES
DIM2-PERMIT,*
DIM3=FORB ID,
DIM4=FORB ID

GFT-360-LOAD,*
RECFM-U, (FE, VEA, ETC. ETC.)
LRECL=O, (80, 121, 137, ETC.)*
BLKSIZE=(1,20000), ((MIN, MAX) OR FIXED)*
SPACE=(010, 10,20), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC=100, (EST IL/DISK BYTES * 100)
KOFFSO (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN=0, (1 ORG, IN TEXT FIELD ONLY) *
DIM-2, (NATIVE DIMENSION)
UC-N, FORCE UC: (YES, NO)*
KEYHDL=-N, (REQ, GEN, BLANK, NO)*
LONGR-F, (TRUNCATE, FOLD; LONG RECS) *
INONLYN, (YES, NO)*
CLASS=B, (TEXT, BINARY)*
KPFILL-Y, (TRAIL FILLS ARE SIGNIF; Y, N)*
SUPRXLY, (PERFORM CODE TRANS; Y, N)
LNGKEY=O, (NOT IN THE DA SENSE)*
DIM1=FORBID, DIMENSIONAL PREFERENCES*
DIM2=PERIIIT,*
DIM3=FOREID,*
DIM4=FORBID

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: ECH

PAGE 67

GFT-36O-PLI -CARDS,*
RECFM=FB, (Fl, VEA, ETC. ETC.)*
LRECLP8O, (80, 121, 137, ETC.)*
BLKSIZE-(80,4000), ((MIN, MAX) OR FIXED)
SPACE=(005,01), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC-4O, (EST IL/DISK BYTES * 100) *
KOFFS-73, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN=l, (1 ORG, IN TEXT FIELD ONLY)
D1Mt-2, (NATIVE DIMENSION)*
UC=Y, FORCE UC: (YES, NO)
KEYHDL-B, (REQ, GEN, BLANK, NO)*
LONGR=F, (TRUNCATE, FOLD; LONG RECS) *
SHORTR-P, (PAD, DON'T PAD; SHORT RECS) *
LONGP'-A, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY-N, (YES, NO)
CLASS=T, (TEXT, BINARY)*
LNGKEY-8, (NOT IN THE DA SENSE)*
TXTLNG-72, TEXT LENGTH RANGE*
DIM1=FORBID * DIMENSIONAL PREFERENCES*
DIM2=PERMIT,*
DIM3-(ASK, 1),
DIM4-(ASK,2)

GFr-360-PLI -CC -CARDS,*
RECFM=FB, (FB, VBA, ETC. ETC.)
LRECL-8O, (80, 121, 137, ETC.)*
BLKSIZE.(80,4000), ((MIN, MAX) OR FIXED)*
SPACE-(005,O1), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC-40, (EST IL/DISK BYTES * 100) *
KOFFS-73, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGNw2, (1 ORG, IN TEXT FIELD ONLY) *
DIM2, (NATIVE DIMENSION)
UC-Y, FORCE LIC: (YES, NO)*

KEHL-B, (REQ, GEN, BLANK, NO)*
LONGR-F, (TRUNCATE, FOLD; LONG RECS) *
SHORTRP, (PAD, DON'T PAD; SHORT RECS) *
LONGP-A, (TRUNC * FOLD, ALLOW; L PAGES)*
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY-N, (YES, NO)*
CLASSuT, (TEXT, BINARY)*
U4GKEY8, (NOT IN THE DA SENSE)*
TXTLNG72, TEXT LENGTH RANGE*
DIMi-FORBID, DIMENSIONAL PREFERENCES*
DIM2-PERMIT,
DIM3-(ASK, 1),*
DIM4-(ASK,2)

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCN

PAGE 68

GFI'-360-PLI -SOURCE,*
RECFM-VB, (FB, VBA, ETC. ETC.)
LRECL-104, (80, 121, 137, ETC.)
BLKSIZE-(104,4000), ((MIN, MAX) OR FIXED)*
SPACE-(005,01), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC-50, (EST IL/DISK BYTES * 100) *
KOFFS-l, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN-1, (1 ORG, IN TEXT FIELD ONLY) *
D112, (NATIVE DIMENSION)*
UC-Y, FORCE UC: (YES, NO)*
KEYHDL-B, (REQ, GEN. BLANK. NO)*
LONGR=F, (TRUNCATE, FOLD; LONG RECS) *
SHORTR7P, (PAD, DON'T PAD; SHORT RECS) *
LONGPA, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP=-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY=N, (YES, NO)*
CLASS-T, (TEXT, BINARY)*
LNJGKEY8, (NOT IN THE DA SENSE)*
TXTLNG=(1,92), TEXT LENGTH RANGE*
DIMi-FORBID, DIMENSIONAL PREFERENCES
DIM2-PERMIT,
DIM3=(ASX, 1),*
DIM4-(ASK,2)

GFT-360-PLI -CC-SOURCE,*
RECFM-VB, (F!, VIA, ETC. ETC.)*
LRECL-104, (80, 121, 137, ETC.)
BLKSIZE.(104,4000), ((MIN, MAX) OR FIXED)
SPACE-(005 ,01), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFACSO,' (EST IL/DISK BYTES * 100) *
KOFFS-1, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN-2, (1 ORG, IN TEXT FIELD ONLY) *
DIM-2, (NATIVE DIMENSION)*
UC-Y, FORCE UC: (YES, NO)
KEYHDL-B, (REQ. GEN, BLANK, NO)*
LONGR-F, (TRUNCATE, FOLD; LONG RECS) *
SHORTRP, (PAD, DON'T PAD; SHORT RECS) *
LONGPA, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTPD, (PAD, DON'T PAD; SHORT RECS) *
INONLY'.N, (YES, NO)
CIASS-T, (TEXT, BINARY)
LNGKEY-8, (NOT IN THE DA SENSE)*
TXTLNG(1,92), TEXT LENGTH RANGE*
DIMI-FORBID, DIMENSIONAL PREFERENCES*
DIM2-PERMIT,
DIH3-(ASK, 1),*
DIM4-(ASK,2)

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 69

GFT=360 -FORTRAN-SOURCE,*
RECFM-FB, (FB, VBA, ETC. ETC.)*
LRECL-8O, (80, 121, 137, ETC.)*
BLKSIZE-(80,4000), ((MIN, MAX) OR FIXED)*
SPACE-C005,0l), (PRIMARY, SECONDARY, DIRECTORY)*
CtIPFAC-40, (EST IL/DISK BYTES * 100)
K0FFS-73, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN-7, (1 ORG, IN TEXT FIELD ONLY) *
DIM-2, (NATIVE DIMENSION)
UC-Y, FORCE UC: (YES, NO)*
KEYHDL-B, (REQ, GEN. BLANK, NO)*
LONGROF, (TRUNCATE, FOLD; LONG RECS) *
SHORTR-P, (PAD, DON'T PAD; SHORT RECS) *
LONGP'A, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP=-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY-N, (YES, NO)*
CLASS-T, (TEXT, BINARY)*
U4GKEY-8, (NOT IN THE DA SENSE)*
TXTLNG-72, TEXT LENGTH RANGE
DIM1wFORBID, DIMENSIONAL PREFERENCES*
DIM2-PERMIT,*
DIM3=(ASK, 1),*
DIM4-(ASK, 2)

GFT-360-LIST,*
nrECFVg, (FB, VBA, ETC. ETC.)*
LRECL-136, (80, 121, 137, ETC.)*
BLKSIZE-(140,4000), ((MIN, MAX) OR FIXED)*
SPACE-(010,02), (PRIMARY, SECONDARY, DIRECTORY)*
CHPFAC-5O, (EST IL/DISK BYTES * 100) *
KOFFS-0, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN-l, (1 ORB, IN TEXT FIELD ONLY) *
DIM-2, (NATIVE DIMENSION)
UC-N, FORCE UC: (YES, NO)*
KEYHDL-t4, (REQ, GEN, BLANK, NO)*
WONGR-F, (TRUNCATE, FOLD; LONG RECS) *
SHOR'rR=P, (PAD, DON'T PAD; SHORT RECS) *
LONGP-F, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP=D, (PAD, DON'T PAD; SHORT RECS) *
INONLY.N, (YES, NO)*
CLASS-T, (TEXT, B INARY)
LNGKEY-O, (NOT IN THE DA SENSE)
TXTLNG-(1,132), TEXT LENGTH RANGE*
DIMlwFORBID, DIMENSIONAL PREFERENCES*
DIM2w(PERMIT, 1),*
DIM3=(PERMIT,2),*
DIM4w(ASK,3)

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: 1CM

PAGE 70

GFT36O-CARDS,*
RECFM=-FB, (FB, VBA, ETC. ETC.)*
LRECL-80, (80, 121, 137, ETC.)*
BLKSIZE=(80,4000), ((MIN, MAX) OR FIXED)
SPACE-(20,40), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC=40, (EST IL/DISK BYTES * 100) *

FOLDMGN-l, (1 ORG, IN TEXT FIELD ONLY) *

DIM-2, (NATIVE DIMENSION)
UC-N, FORCE UC: (YES, NO)*
LONGR=F, (TRUNCATE, FOLD; LONG RECS) *

SHORTRP (PAD, DON'T PAD; SHORT RECS) *

LONPiA, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP-=D, (PAD, DON'T PAD; SHORT RECS) *

INONLIl (YES, NO)*
CLASS-TI (TEXT, BINARY)*
TXTLNG8O, TEXT LENGTH RANGE*
DIMI-FORBID, DIMENSIONAL PREFERENCES*
DIM2-PERNIT,
DIM3=(ASK, 1),*
DIM4-(ASK,2

GFTr-360-OBJECT,
RECFM'.FB (FB, VBA, ETC. ETC.)*
I.RECL-80, (80, 121, 137, ETC.)*
BLKSIZE(Z80,3200), ((MIN, MAX) OR FIXED)*
SPACE-(20,40), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC4O, (EST IL/DISK BYTES * 100) *

KOFFS-73, (1-ORG, IN TEXT FIELD ONLY) *

FOLDMGN1,' (1 ORG, IN TEXT FIELD ONLY) *

DlM2, (NATIVE DIMENSION)*
UC-N, FORCE UC: (YES, NO)*
KEYHDL-G, (REQ, GEN, BLANK, NO)*
WONGRJ (TRUNCATE, FOLD; LONG RECS) *

SHORTRP, (PAD, DON'T PAD; SHORT RECS) *

LONGP-A, (TRUNC, FOLD. ALLOW; L PAGES)*
SHORTPD, (PAD, DON'T PAD; SHORT RECS)
INONLYN, (YES, NO)
CLASS-B, (TEXT, BINARY)*
KPFILLY, (TRAIL FILLS ARE SIGNIF; Y, N)*
SUPRlXLY, (PERFORM CODE TRANS; Y, N) *

LN GKEY8, (NOT IN THE DA SENSE)*
TXTLNG72, TEXT LENGTH RANGE*
DIM1-FORDID, DIMENSIONAL PREFERENCES*
DIM2-PERM IT,*
DIM3u(ASIC, 1),
DIM4-(ASK,2

Supparting the IBM File System in NSW
November 20, 1980 -- Pert III: 1CM

PAGE 71

GFT-36O-OVERPRINT,*
RECFH-VBA, (FB, VIA, ETC. ETC.)*
LRECL-137, (80, 121, 137, ETC.)*
BLKSIZE-(141,4000), ((MIN, MAX) OR FIXED)
SPACE-(010,02), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC-5O, (EST IL/DISK BYTES * 100) *
KOFFSO0, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN-1, (1 ORG3 IN TEXT FIELD ONLY) *
DIM-4, (NATIVE DIMENSION)*
UC-N, FORCE UC: (YES, NO)*
KEYHDLwN, (REQ, GEN. BLANK. NO)
LONGR-F, (TRUNCATE, FOLD; LONG RECS) *
SHORTR.P, (PAD, DON'T PAD; SHORT RECS) *
WONGPF, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
INONLYt4, (YES, NO)
CLASSUT, (TEXT, BINARY)
LNGKEY-0, (NOT IN THE DA SENSE)
TXTLNG=(1,132), TEXT LENGTH RANGE*
DIM1-FORBID, DIMENSIONAL PREFERENCES*
DIM2=(PERMIT,3),*
DIM3-(PERMIT,2),*
DIM4-(PERMIT, 1)

GFT-360-ASM-SOURCE,
RECFM-FB, (FB, VBA, ETC. ETC.)*
LRECL-80, (80, 121, 137, ETC.)*
BLKSIZE-(80,4000), ((MIN, MAX) OR FIXED)*
SPACE-(005,01), (PRIMARY, SECONDARY, DIR2ECTORY)*
CMPFAC-40, (EST IL/DISK BYTES * 100) *
KOFFS-73, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN=16, (1 ORG, IN TEXT FIELD ONLY) *
DIM-2, (NATIVE DIMENSION)
uC-Y, FORCE UC: (YES, NO)*
KEYHDLwG, (REQ, GEN, BLANK, NO)
WONGRF, (TRUNCATE, FOLD; LONG RECS) *
SHORTRP, (PAD, DON'T PAD; SHORT RECS) *
LONGP-A, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY-N, (YES, NO)*
CLASS-T, (TEXT, BINARY)*
LNGKEY8, (NOT IN THE DA SENSE)
TXTLNG-72, TEXT LENGTH RANGE
DIM1.FORBID, DIMENSIONAL PREFERENCES*
DIM2-PERMIT,
DIM3-(ASK, 1),
DIM4-(ASK, 2)

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: 3CM

PAGE 72

GFT-36O-COBOL-SOURCE,*
RECFM-FB, (FB, VIA, ETC. ETC.)*
LRECL-80, (80, 121, 137, ETC.)
ILKSIZE-(80,4000), ((MIN, MAX) OR FIXED)*
SPACE-(005,Ol), (PRIMARY, SECONDARY, DIRECTORY)*
CNPFAC-40, (EST IL/DISK BYTES * 100) *
KOFFS-1, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN-6, (1 ORG, IN TEXT FIELD ONLY) *
DIM-2, (NATIVE DIMENSION)*
UCUY, FORCE UC: (YES, NO)*
KEYHDL-G, (REQ. GEN. BLANK, NO)
WNGRIF, (TRUNCATE, FOLD; LONG RECS) *
SHORTIwP, (PAD, DON'T PAD; SHORT RECS) *
WONGP-A, (TRUNG, FOLD, ALLOW; L PAGES)*
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY-N, (YES, NO)*
CLASS-T, (TEXT, BINARY)*
LNG=EY=6, (NOT IN THE DA SENSE)
TXTU4G7I, TEXT LENGTH RANGE
DIMI-FORBID, DIMENSIONAL PREFERENCES*
DIM2=PERMIT,*
DIM3-(ASK, 1),*
DIM4-(ASK,2)

GFTin360-COBOL-SEQ-SOURCE,*
RECFMFB, (FB, VIA, ETC. ETC.)*
LRECL80, (80, 121, 137, ETC.)*
BLKSIZE(80,4000), ((MIN, MAX) OR FIXED)*
SPACE-(00S,01), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC-40, (EST IL/DISK BYTES * 100) *
KOFFS-73, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN.12, (1 ORO, IN TEXT FIELD ONLY) *
DIM.'2, (NATIVE DIMENSION)
UCEY. FORCE UC: (YES, NO)
KEYHDL-G, (REQ, GEN, BLANK, NO)
WONGR-F, (TRUNCATE, FOLD; LONG RECS) *
SHORTR, (PAD, DON'T PAD; SHORT RECS) *
LONGP-A, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP'UD, (PAD, DON'T PAD; SHORT RECS) *
INONLY-N, (YES, NO)*
CLASST, (TEXT, BINARY)*
LNGKEY-8, (NOT IN THE DA SENSE)
TXTLNG.72, TEXT LENGTH RANGE*
DIMi-FORBID, DIMENSIONAL PREFERENCES*
DIM2-PERMIT,*
DIM3-(ASK, 1),*
DIM4-(ASK ,2)

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 73

GFT=360-ORIGINAL, *
RECFM-VBA, (FB, VBA, ETC. ETC.) *
LRECL-1000, (80, 121, 137, ETC.) *
BLKSIZE-(1004,4000), ((HIN, MAX) OR FIXED) *
SPACE-(010,02), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC-100, (EST IL/DISK BYTES * 100) *
KOFFSMO, (1-ORG, IN TEXT FIELD ONLY) *
FOLDIGN-I, (1 ORG, IN TEXT FIELD ONLY) *
DIN-4, (NATIVE DIMENSION) *
UC-N, FORCE UC: (YES, NO) *
KEYHDLwN, (REQ, GEN, BLANK, NO) *
LONGR-F, (TRUNCATE, FOLD; LONG RECS) *
SHORTR"P, (PAD, DON'T PAD; SHORT RECS) *
LONGP"F, (TRUNC, FOLD, ALLOW; L PAGES) *
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY-Y, (YES, NO) *
CIASSsT, (TEXT, BINARY) *
UNGZEY0, (NOT IN THE DA SENSE) *
TXrLNG=(1,1000), TEXT LENGTH RANGE *
DIMI-PERMIT, DIMENSIONAL PREFERENCES *
DIM2-PERMIT, *
DIM3PERMIT, *
DIM4PERMIT

GFT-360-ORIGINAL-BIN,
RECFMVBA, (FB, VIA, ETC. ETC.) *
LRECL1l000, (80, 121, 137, ETC.) *
BLKSIZE-(1004,4000), ((MIN, MAX) OR FIXED) *
SPACE-(010,02), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC100, (EST IL/DISK BYTES * 100) *
KOFFS-O, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMG1, (I ORG, IN TEXT FIELD ONLY) *
DIM4, (NATIVE DIMENSION) *
UCN, FORCE UC: (YES, NO) *
KEYHDL-N, (REQ, GEN, BLANK, NO) *
LONGR-F, (TRUNCATE, FOLD; LONG RECS) *
SHORTIP, (PAD, DON'T PAD; SHORT RECS) *
LONGP"F, (TRUNC, FOLD, ALLOW; L PAGES) *
SHORTPND, (PAD, DON'T PAD; SHORT RECS) *
INONLY-Y, (YES, NO) *
CIASSB, (TEXT, BINARY) *
LNGKEY"O, (NOT IN THE DA SENSE) *
TXTLUG(1,1000), TEXT LENGTH RANGE *
DIM1-PERMIT, DIMENSIONAL PREFERENCES *
DIM2uPERMIT, *
DIM3"PERMIT, *
DI."PERHIT

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE '74

GFr-360-ASM8O-SOURCE,
RECFMwFB, (FB, VIA, ETC. ETC.)*
LRECLIO (80, 121, 137, ETC.)
BLKSIZE-(80,4000), ((MIN, MAX) OR FIXED)*
SPACE=(005.01), (PRIMARY, SECONDARY, DIRECTORY)*
CHPFAC-40, (EST IL/DISK BYTES * 100)
KOFFS-73, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN-16, (I ORG, IN TEXT FIELD ONLY) *
DIM-2, (NATIVE DIMENSION)
UC-Y, FORCE UC: (YES, NO)*
KEYHDLlG (REQ, GEN, BLANK, NO)*
LOINGRalF (TRUNCATE, FOLD); LONG RECS) *
SHORTRP, (PAD, DON'T PAD; SHORT RECS) *
WONGP-A, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY-N, (YES, NO)*
CLASST, (TEXT, BINARY)*
UIGKEY4, (NOT IN THE DA SENSE)
TXTLNG-72, TEXT LENGTH RANGE
DIMI.FORDID, DIMENSIONAL PREFERENCES*
DIH2-PERMIT,
DIM3-(ASK, 1),
DIM4-(ASK,2)

GFT-360 -C52H- SOURCE,*
RECFH'FB, (FB, VIA, ETC. ETC.)
LRECL-80, (80, 121, 137, ETC.)
BLKSIZE-(80,4000), ((MIN, MAX) OR FIXED)
SPACE-(005,01), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC-40, (EST IL/DISK BYTES * 100)
DIM-.21 (NATIVE DIMENSION)*
UC-Y, FORCE UC: (YES, NO)*
KEYHDL-B, (REQ, GEN, BLANK, NO)*
LO = RF, (TRUNCATE, FOLD; LONG RECS) *
SNORTRP, (PAD, DON'T PAD; SHORT RECS) *
WOP-A, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP'.D, (PAD, DON'T PAD; SHORT RECS) *
INOt4LYN, (YES, NO)*
CIASS-T, (TEXT, BINARY)*
DZIi-FORBID, DIMENSIONAL PREFERENCES
DIM20PERMIT,
DIM3-(ASK,1),
DIM4(ASK, 2), *******FOLLOWING ARE TEMPORARY
KOFFS-0, (1) (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN7, (1) (1 ORG, IN TEXT FIELD ONLY) *
LNGKEY-0, (6) (NOT IN THE DA SENSE)*
TXTLNG-80 (74) TEXT LENGTH RANGE

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: 1CM

PAGE 75

GFT=36O -PL48O -SOURCE,
RECFM-FB, (FB, VIA, ETC. ETC.)*
LRECL.80, (80, 121, 137, ETC..)*
BLISIZE-(80,4000), ((MIN, MAX) OR FIXED)*
SPACE-COOS ,01), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC-4O, (EST IL/DISK BYTES * 100) *
KOFFS-73, (1-ORG. IN TEXT FIELD ONLY) *
FOLM01G-1, (1 ORG, IN TEXT FIELD ONLY)
DIM-2, (NATIVE DIMENSION)
UC=Y, FORCE UC: (YES, NO0)*
KEYHDL-B, (REQ, GEN, BLANK, NO)*
WNGR-F, (TRUNCATE, FOLD; LONG RECS) *
SIORTR-P, (PAD, DON'T PAD; SHORT RECS) * -

WONGP-A, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
INONLYAN, (YES, NO)*
CLASS-T. (TEXT, BINARY)
IJ4GKEY.8, (NOT IN TIE DA SENSE)*
TXTIL;G72, TEXT LENGTH RANGE*
DIMl-FORBID, DIMENSIONAL PREFERENCES*
DIM2-PERHIT,
DIM3-(ASK, 1),
DIM4-(ASX,2)

GFTr36-SPPCOBOL-SOURCE,*
RECFH-FB, (FB, VIA, ETC. ETC.)
LRECL-80, (80, 121, 137, ETC.)*
BLKSIZE-(80,4000), ((HIM, MAX) OR FIXED)
SPACE-COOS ,01), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC-40, (EST IL/DISK BYTES * 100) *
KOFFS-1, (1-ORG, IN TEXT FIELD ONLY) *
FOLDMGN.6, (1 ORG, IN TEXT FIELD ONLY) *
DIM-2, (NATIVE DIMENSION)
UC-Y, FORCE UC: (YES, NO)*
KEYHDLIG, (REQ, GEN, BLANK, NO)*
WNGR-F, (TRUNCATE, FOLD; LONG RECS) *
SHORTR-P, (PAD, DON'T PAD; SHORT RECS)
WOP-A, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY.N, (YES, NO)
CIASS-T, (TEXT, BINARY)*
LNGKEY-6, (NOT IN THE DA SENSE)*
TkMLNG-74, TEXT LENGTH RANGE
DIll-FORBID, DIMENSIONAL PREFERENCES
DIMZ-PERMIT,
DIm3-(Asx, 1),*
DIM4-(ASK,2)

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 76

GFT-360-CMS2M-OBJ,
RECYM-VIS, (FB, VIA, ETC. ETC.)
LRECL-3516, (80, 121, 137, ETC.)*
BLKSIZEN(3520,3520). ((MIN, MAX) OR FIXED)*
SPACEO(20,40), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC=40, (EST IL/DISK BYTES * 100) *

FOLDMGN-l, (1 ORG, IN TEXT FIELD ONLY) *
DIM-2, (NATIVE DIMENSION)*
UC-N, FORCE UC: (YES, NO)*
LONGRIF, (TRUNCATE, FOLD; LONG RECS) *

SHORTR-P, (PAD, DON'T PAD; SHORT RECS) *

WONGP-A, (TRUNC, FOLD, ALLOW; L PAGES)
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *

INONLY-N, (YES, NO)*
CLASS-B, (TEXT, BINARY)
KPFILL' (TRAIL FILLS ARE SIGNIF; Y, N)*
SUPRXL-Y, (PERFORM CODE TRANS; Y, N) *

LNGKEY-O, (NOT IN THE DA SENSE)*
TXTLNG-35 12, TEXT LENGTH RANGE*
DIMI-FORBID, DIMENSIONAL PREFERENCES*
DIM2-PERMIT,*
DIM3-(ASK, 1),*
DIM4-(ASK ,2)

GFT-360-PIJ180-OBJ,
RECFM-FBA, (FB, VIA, ETC. ETC.)
LRECL-133, (80, 121, 137, ETC.)*
BLKSIZEO(133,3500), ((MIN, MAX) OR FIXED)
SPACE-(20,40), (PRIMARY, SECONDARY, DIRECTORY)*
CMPTAC=40, (EST IL/DISK BYTES * 100) *
FOLDfIGN01, (1 ORG, IN TEXT FIELD ONLY) *

DIN.3, (NATIVE DIMENSION)*
UC-N, FORCE UC: (YES, NO)*
LONGR-F, (TRUNCATE, FOLD; LONG RECS) *
SHORTR-P, (PAD, DON'T PAD; SHORT RECS) *
LONGP-A, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY-N, (YES, NO)*
CLASS-T, (TEXT, BINARY)*
KPTILLiY, (TRAIL FILLS ARE SIGNIF; Y, N)*
SUPRXL-Y, (PERFORM CODE TRANS; Y, N) *
LNGKEYO0, (NOT IN THE DA SENSE)
TXTLNG-133, TEXT LENGTH RANGE
DINlUFORBID, DIMENSIONAL PREFERENCES*
DIM2-PERMIT,*
DIM3=PERMIT,*
DIM4=(ASK,2)

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: BCM

PAGE 77

GFT-360-ASM8O-OBJ,
RECFM-FB, (FB, VIA, ETC. ETC.)*
LRECI l32, (80, 121, 137, ETC.)
BLKSIZE-(132,3500), ((MIN, MAX) OR FIXED)*
SPACE(20 ,40), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC=4O, (EST IL/DISK BYTES * 100) *
FOLDHGN-1, (1 ORO, IN TEXT FIELD ONLY) *
DIM-2, (NATIVE DIMENSION)*
UC-N, FORCE UC: (YES, NO)*
LONGR-F, (TRUNCATE, FOLD; LONG RECS) *
SHORTR-P, (PAD, DON'T PAD; SHORT RECS) *
LONGP-A, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
CLASS-T, (TEXT, BINARY)*
KPFILIPY, (TRAIL FILLS ARE SIGNIF; Y, N)*
SUPRXLY, (PERFORM CODE TRANS; Y, N) *
LNGKEYO0, (NOT IN THE DA SENSE)*
TXTLNG133, TEXT LENGTH RANGE*
INONLYN, (YES, NO)*
DIMI-FORBID, DIMENSIONAL PREFERENCES*
DIM2-PERMIT,*
DIM3-(ASK, 1),*
DIM4-(ASK,2)

GFT-360-JCL,*
RECFM.FB, (PB, VIA, ETC. ETC.)*
LRECL80, (80, 121, 137, ETC.)*
BLKSIZE-(80,4000), (CHIN, MAX) OR FIXED)*
SPACE-(005,O1), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC=40, (EST IL/DISK BYTES * 100)
KOFFS-73, (1-ORG, IN TEXT FIELD ONLY) *
FOLDHGN-16, (1 ORG, IN TEXT FIELD ONLY) *
DIM2, (NATIVE DIMENSION)*

CY FORCE UC: (YES, NO)*
KEYHDL-G, (REQ, GEN, BLANK, NO)*
WONGR'SF, (TRUNCATE, FOLD; LONG RECS) *
SHORTRu-P, (PAD, DON'T PAD; SHORT RECS) *
WONGP-A, (TRUNC, FOLD, ALLOW; L PAGES)*
SHORTP-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY.N, (YES, NO)
CLASS-T, (TEXT, BINARY)*
LNGKY8, (NOT IN THE DA SENSE)
TXTLNG-72, TEXT LENGTH RANGE*
Diml-FoRimI, DIMENSIONAL PREFERENCES*
DIM2-PERMIT,*
DIM3-(ASK, 1),
DIM4-(ASK,2)

Supporting the IBM File System in NSW
November 20, 1980 -- Part III: ECH

PAGE 78

GFT-360-TEXT,
RECFM=VB, (PB, VBA, ETC. ETC.)*
LRECL-136, (80, 121, 137, ETC.)*
BLKSIZE=(140,4000), ((MIN, MAX) OR FIXED)*
SPACE-(010,02), (PRIMARY, SECONDARY, DIRECTORY)*
CMPFAC=50, (EST IL/DISK BYTES * 100) *
KOFFSO0, (1-ORG. IN TEXT FIELD ONLY) *
FOLDMGN=1, (1 ORG, IN TEXT FIELD ONLY) *
DIM=2, (NATIVE DIMENSION)*
UC-N, FORCE UC: (YES, NO)*
KEYHDL=N, (REQ, GEN, BLANK, NO)*
LONGR=PF, (TRUNCATE, FOLD; LONG RECS) *
SHORTR-P, (PAD, DON'T PAD; SHORT RECS) *
LONGP=-F, (TRUNG, FOLD, ALLOW; L PAGES)*
SHORTP=-D, (PAD, DON'T PAD; SHORT RECS) *
INONLY-N. (YES, NO)
CLASSdr, (TEXT, BINARY)*
LNGKEY-0, (NOT IN THE DA SENSE)*
TXTLNG-(1,132), TEXT LENGTH RANGE*
DIMi-FORBID, DIMENSIONAL PREFERENCES*
DIM2-(PERMIT, 1),*
DIM3-(PERMIT,2),*
DIM4-(ASK, 3)

Supporting the IBM1 File System in NSW
November 20, 1980 -- Part IV: Libraries

PART IV

UCLA RECCOIIMENDATIONS ON LIBRARIES IN NSW

This section is separately available
as UCLA document TR-16

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

TABLE OF CONTENTS

4. PART IV: UCLA RECCOMMENDATIONS ON LIBRARIES IN NSW . .. 1
4.1. THE SPECIFIC PROBLEM 1
4.1.1. IBM TOOLS IN NSW......................1
4.1.2. FILE LIBRARIES. 2
4.1.3. THE IBM IMPLEMENTATION.. 3
4.1.3.1. DESCRIPTION..... 3
4.1.3.2. TYPICAL USAGE. 4
4.1.3.3. MISCELLANEOUS PROBLEMS. 5
4.1.4. DESIDERATA.. 6
4.2. THE PROBLEM IN PERSPECTIVE 7
4.2.1. THE GENERAL PROBLEM OF UNMOVEABLE FILES 7
4.2.2. THE GENERAL PROBLEM OF COLLECTIVE FILES 7
4.3. PROPOSED SOLUTIONS.. 8
4.3.1. THE DATABASE MODEL. 8
4.3.1.1. DESCRIPTION.. 8
4.3.1.2. EVALUATION 9
4.3.2. THE NSW SCOPE MODEL..... 10
4.3.2.1. DESCRIPTION..... 10
4.3.2.2. EVALUATION 10
4.3.3. THE COLLECTIVE FILE MODEL -- BASIC FORM 13
4.3.3.1. DESCRIPTION.. 13
4.3.3.2. EVALUATION 15
4.3.4. THE COLLECTIVE FILE MODEL WITH VERSIONS 16
4.3.4.1. DESCRIPTION.. 16
4.3.4.2. EVALUATION. 17
4.4. RECOMMENDATIONS.. 18

C114 ill ID1,10

Supporting the IBM File System in N3W
November 20, 1980 -- Part IV: Libraries

PAGE 2

4.1.2. FILE LIBRARIES

Logically, a library is a data construct which defines a search
scope. The objects being searched for carry names in a namespace
internal to the library. This namespace may be private to the
library and its users, and independent of the namespace within which
the library itself is named, or it may be a private subspace of the
larger namespace. Library files of some form have been with us
since there were linking loaders. Most major computer language
definitions include specification of some form of library facility.
This is true of COBOL, of PL/I, and of macro-assemblers as a class.
A library facility is a part of the DOD published requirements for
ADA (ne DOD-1), as is the ability to structure that library along
application, project, and user lines.

A library is like a file in that the library name is a name in the
host operating system's file name space, and is what becomes bound
to a program's file by the operating system's file-management
facilities when the program intends to use that file as a search
scope. In this case, the internal namespace is not known to the
file-management system, and is fully managed by the program.

A library is like a collection of files in that thp name formed by
qualifying a name from its internal namespace by its file name is
itself a legitimate file name, and can be bound to a program's file
when that program intends to use that file as a sequential input
source.

A library can thus serve as a convenient repository for a general
collection of like files. This usage is an inessential side effect;
however, it points out that, where a filespace is hierarchically
structured, there is great similarity between a library and a
filespace subtree.

I

-!

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 3

4.1.3. THE IBM IMPLEMENTATION

4.1.3.1. DESCRIPTION

There are several operating systems for the IBM System/360-370
family, but NSW will probably be concerned with two: MVT, a
real-memory system, and MVS, a virtual-memory system. In both
systems, a library is structured as a PDS. This structure has
been a part of IBM systems since OS/360 was announced in 1964. In
current systems, PDS's are not only supported, they are required,
as is illustrated by the fact that one of the supervisor's basic
services, program fetch, demands a PDS.

It is a good guess that future IBM system announcements will
continue to require PDS's, and it is a certainty that they will
continue to support them. At any rate, should IBM ever cease PDS
support, systems using PDS's will still be in the field for some
years thereafter.

A PDS is a collection of named files of like type, structure, and
function, with a single file name, and a single disk allocation
and attribute set. Each "member" of the collection has a simple
name, and may have a number of "aliases". The set of names and
aliases are tabulated n a special "member" called the
"directory". The directory, by virtue of being unnamed, is not
normally available to processing program directly.

On the system command level (JCL or TSO), a reference to a PDS can
name either the collection or a specific "member" of the
collection. In the latter case, the reference is to a sequential
file which can be processed as such by almost any program which
uses the IBM sequential access method (SAM) file interface. With
some unimportant exceptions, a reference to the PDS as a
collection can only be processed by a program which consciously
uses the BPAM interface, that is, one which operates on a library.

A PDS as a library is indicated whenever a program is to be told
"whenever you need to locate a named piece of data of this certain
sort, search this subset of the file space." This is particularly
true when the name of the piece of data cannot be known until
execution time. Common applications include: a command language
executor searches a command library for the program named the same
as the command just entered; a linking loader searches a
subroutine library for routines whose names match the unresolved
subroutine references within a program; an assembler searches a
macro-definition library whenever an otherwise undefined operation
code is encountered; the PL/I compiler searches a text library
whenever a "%INCLUDE" statement is processed.

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 4

IBM files are allocated in terms of contiguous extents of real
disk space. When a member is replaced in a PDS, its space is not
reused. This is nicely compatible with the notion of version
numbers for members, since under that notion the old member is not
to be destroyed in any case; however, it does mean that space must
be garbage collected on occasion. To the local user, the garbage
collection croblem appears only as the necessity to run an
occasional compress" utility on the library. This is either done
whenever the user feels it may be needed, or when an attempt to
add a member fails. When the "user" is a file package, more
concrete criteria will have to be defined. This is essentially a
local file package implementor' s problem.

4.1.3.2. TYPICAL USAGE

Meaningful use of a library facility requires a "concatenation"
facility, that is, a method to allocate an ordered set of
libraries to a program in order to define a search rule. NSW
support for concatenated allocation is not now provided, but it
will not be difficult, and it need not be discussed here.

The number of members and volume of data in a PDS vary drastically
according to the application. As an example of typical data
volumes, consider the concatenation of PDS's that is routinely
allocated to the OS/360 assembler's macro library file in order to
assemble a file package routine:

IBM macro library: 313 members, 4.0 MB
UCLA macro library: 812 members, 4.9 MB
NSW macro library: 23 members, 115 KB
FLPKG macro library: 58 members, 524 KB

TOTALS: 1206 MEMBERS, 9.5 MB

A typical file package assembly will actually select and read
perhaps 100 kilobytes, or about a dozen members of this data.
Notice that not only is a rich variety of macro definitions made
available to the programmer, but a search rule is specified by the
order of concatenation. The user must be given control of his
search order, so he must be able to specify an ordered set of NSW
file names to be provided to a tool.

This presents a new naming problem. If the tool user is be able
to name the IBM-provided macro library at UCLA, then that library
must have an NSW file name. However, the local name of that
library is fixed, and cannot be chosen by the file package in the
same way that a true NSW file name is. Therefore, a mechanism
must be provided for assigning an existing local name to a new NSW

--

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 5

file name. A slightly expanded version of FP-IMP could do this.

A consequence of the dual nature of PDS access is that a PDS may
be used, at the programer's discretion, to hold any collection of
similar, related files, whether or not they are ever to be
accessed as a library, and to reference and operate upon them
collectively.

4.1.3.3. MISCELLANOUS PROBLEMS

Other problems arise when one tries to address PDS's and their
members via NSW. Some of these include:

* Version numbers need to be provided for members instead of for

libraries.

* Member names may need to be both mapped and unmapped in the

NSW file name space.

Access to a PDS member can make the entire library appear busy
to the host operating system.

* Physical copies of the same NSW file must be capable of
existing both as sequential files and as members of PDS's.

True encapsulation of BPAM presents political difficulties

that may make it impractical.

* Alias management will surely cause complications somewhere.

I I=1 AWS M

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 6

4.1.4. DESIRATA

V. feel that the absence of any form of library support in NSW is a
serious omission. The entire NSW community could benefit from the
Integration of the library concept directly into the NSW file
structure. Direct benefits could include:

* IBM tools could be supported.

* The IBM library implementation could be enriched by merging in
good NSW concepts like version numbers for members. (Note that
NSW file version number support is being implemented in NSW.)

* A mechanism for defining search scopes in NSW would be provided.

This would be especially important for "new" (unencapsulated)
tools on non-IBM hosts.

* A convenient and efficient form of collective file operations
would become available to NSW users.

* Installation-provided and maintained libraries could be shared

with MO users.

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 7

4.2. THE PROBLEM IN PERSPECTIVE

4.2.1. THE GENERAL PROBLEM OF UNMOVEABLE FILES

The library problem in NSW is related to the general problem of
NSV-unmoveable file types. These include all non-sequential types,
such as those processed by IBM's Basic Direct Access Method (BDAM),
Indexed Sequential Access Method (ISAM), or Virtual Storage Access
Method (VSAM). They include files with an affinity to a particular
tool, host, or operating system, as a database has affinity to a
DBMS implementation. They also include files which, by virtue of
their great mass, are not practically moveable. If a library is
represented as a file, it is usually unmoveable due to its great
mass. If it is represented as a PDS, it is also unmoveable, except
for "family copies", due to its non-sequential nature and its
affinity for an operating system.

It is likely that most unmoveable files will be integrated into NSW
through a simplistic model in which the construct is given an NSW
name, perhaps even an NSW file name, but it is operated on only by
tool code, never by NSW code per se.

4.2.2. THE GENERAL PROBLEM OF COLLECTIVE FILES

The library problem is also related to the general problem of
collective file typos. These also include "stacked tapes".
"Stacked tapes" will be important in NSW because they frequently
will be the exported results when NSW is used for cross-system
program development for systems such as the UYK-20. They consist of
a sequence of sequential files, any of which could be processed as a
legitimate NSW file. Once "stacked" as a "load tape" image, these
will be collectively known by one NSW file name, and that collective
file must be transmittable by the NSW to a host capable of writing a
UTK-20 load tape. The NSW file package's "IL" data representation
has been given a special "end-of-subfile" construct to accomodate
this transmission, although it is not yet being used. While this
usage does not require that the individual members of the "stack" be
independently retrievable and replaceable, that usage could develop.
In either case, it is highly probable that we will represent a
"stacked tape" on the IBM system as a PDS.

Another type of collective file that will see use in NSW is the
"mail file" of the TENEX sort. A mail file is really a special use
of a library file, and an IBM implementation could well use a PDS.

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 8

4.3. PROPOSED SOLUTIONS

4.3.1. THE DATABASE MODEL

4.3.1.1. DESCRIPTION

In this model, a PDS is considered to be a special form of
database -- it has an NSW file name, but not an NSW file
structure. Its NSV file name can be allocated to any batch or
interactive tool, provided that tool resides on the same host as
the single physical copy of the file. The IBM file package will
never make a tool copy of such a file, but will always grant the
tool access to the NW copy directly (this mechanism is already
implemented in the IBM file package). Thus encapsulated tools can
access such a file in native mode; however, explicit tools must be
provided for file maintenance.

In the general database model, file structure and implementation
are dictated by a tool or set of tools, and maintenance functions
are included in that set, since the set of meaningful maintenance
functions depends on the file structure and implementation. In
the case of PDS maintenance, the following probably represents a
minimal set of maintenance functions to be provided by a special
tool or tools:

1) Create a PDS.

2) Copy an NSW file into a PDS member.

3) Copy a PDS member into an NSW file.

4) List the member and alias names.

5) Delete a member or alias.

6) Rename a member or alias.

7) Assign an alias to a member.

8) Analyze a PDS for garbage content.

9) Compress (garbage collect) the PDS.

This model would enable any IBM tool to process a PDS as a
library, but not to process a member as a sequential file, since
the member has no NSW file name. However, any NSW tool, IBM or
otherwise, could operate on a member's data if the user made
explicit use of the maintenance tools to extract and replace it.
Specific IBM tools could regain their ability to operate on a PDS

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 9

member by using a local NSW-provided preface routine, such as the
UCIA Encapsulator Comand Interpretor (ECI) to explicitly refine
the PDS allocation into a member allocation. This mechanism would
be supplied initially to the IBM TSO EDIT tool, since it accounts
for the great majority of sequential references to PDS members.

In order to bring a PDS unchanged into NSW, a special version of
IMPORT would be required. This version must support assigning an
NSV file name to a given existing file which NSW will share with
non-NSW users of the host.

4.3.1.2. EVALUATION

The database model is simple and easy to implement; however, it
fills only one NSW desideratum. It makes it possible to integrate
IBM tools into NSW, but at the expense of using non-NSW methods
and mechanisms to do a large part of the kinds of processing
usually associated with program development tasks. It does not
improve upon the library functions available from the IBM4
implementation, nor does it provide search scopes and collective
operations to non-IBM tools or to NSW users. It makes library
data available for general use only through special user action.
It violates a fundamental NSW precept by allowing a tool write
access to the NSW copy of a file.

Nevertheless, the database model has one overpowering advantage --
it can be implemented by host software development personnel
without requiring any changes at all to the works manager or to
other NSW code. The probable result of this fact is that,
whatever model is selected for integrating libraries into NSW
properly, the database model is going to be used in the interim to
support existing needs. Such interim support will be fully
sufficient for existing tools and for those planned for the
immersion project ("Immersion" is used to denote the adoption of
the NSW as the sole or primary vehicle for the development,
maintenance, and configuration of the NSW itself).

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 10

4.3.2. THE NSW SCOPE MODEL

4.3.2.1. DESCRIPTION

This model is based upon the similarity between a library and a
subtree of a hierarchically structured filespace. NSW has such a
filespace, and calls such a subtree a scope. The scope model
hinges on these features:

* NSW must allow a user to allocate an NSW scope name instead of

an NSW file name to a tool.

* BPA must be encapsulated to the point of giving control to
NSW code whenever a tool issues the supervisor service call
that locates members within a PDS (the BLDL SVC call).

* The NSW IBM encapsulating foreman must form filespecs by

qualifying each requested member name by the allocated scope
name, must issue WM-GET calls against these filespecs, and
must copy any resulting files into a true PDS in the tool's
workspace, under the appropriate member names.

* The information flow of WM-GET must be embellished to

communicate from the foreman to the file package the name of
the PD3 into which the tool copy is to be made.

* BPAM must also be encapsulated to the point of giving control

to NSW code whenever a tool issues the supervisor service call
that creates members within a PDS (the STOW SVC call).

* The NSW IBM encapsulating foreman mst retain the name of each
newly-created member in its LND, as each constitutes a
deliverable file.

* The NSW user interface, or at least the IBS component, must be

sophisticated to manage the case where the set of deliverables
for a tool instance is bound after tool execution.

4.3.2.2. EVALUATION

The scope model has much appeal. It integrates IBM tools into
NSW, and it does it through the encapsulation technique that NSW
prefers for such purposes. It does embellish upon the PDS
implementation such that "members", being NSW files, can have all
the attrictivo NSW properties, like version numbers. It provides
mechanism that will be useful to "new" tools on non-IBM hosts.

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 11

On the negative side, the scope model can be expected to require
an order of magnitude more space in the NSW file catalog, since
not only are all libraries there, but each "member" is
individually represented by an NSW file name. This model does not
provide more efficient collective operations on libraries, since
NSW file operations on scopes will be simple iterations of file
operations.

Since local TBH libraries must still be represented as PDS's, this
model can only handle user data. This will prevent the user's
specifying a search order between public and private libraries.

But the crippling disadvantages of the scope model are matters of
practicality and efficiency. Such an implementation is not
feasible under a real-memory batch-processing system such as
0S/360 NVT, due to various combinations of the following facts:

* All network I/0 for a real-memory batch job MUST be prestaged.
Otherwise, a typical two-minute assembly could be stretched to
half an hour, with one batch stream and perhaps 200K of
storage tied up for that interval. This is because a typical
assembly will ask for a dozen macros, one at a time, when it
decides it needs them. Each would be a WH-GET request, and
could take several minutes.

* It is not sensible to prestage an entire search scope, when
only a very small percentage of the data will actually be read
by the tool.

* It is not possible to predict which parts of a search scope
will be needed.

* Even if the entire search scope could be coaxed into staying
on one host, the encapsulation of the elementary supervisor
services used by IBM tools to search and read libraries is not
politically practical. Without system modifications, the
search scope MUST be structured as a concatenation of
Partitioned Data Sets. The modifications to the IBM
supervisor to make this not so are not likely to be allowed by
any systems manager.

It may be that some of these problems do not apply to MVS. Under
a virtual-memory system it may be practical to do no prestaging of
library data at all, since waiting for a WM-GET will not tie up
valuable hardware. However, remember that the only IBM
installation currently in NSW is an MVT batch system, and that
significant numbers of such systems exist in DOD installations.

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 12

Unfortunately, neither MVT nor MVS provides a general mechanism
comparable to the JSYS traps of TENEX, so the BLDL and STOW
routines must be modified in order to encapsulate those BPAM
functions. Such modifications are not to be done lightly, as they
cause a loss of IBM software support, so that many IBM
installations would not consider them. Unlike some vendors, IBM
is quite unresponsive to requests that they add such changes as
supported features.

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 13

4.3.3. THE COLLECTIVE FILE MODEL -- BASIC FORM

4.3.3.1. DESCRIPTION

In this model, the NSW filespace is embellished to include the
notion of a file library construct, but not the notion of version
numbers for library members. Library representation is presumed
to be host-family specific, so each host family is allowed to
specify its own implementation. Libraries thus become more or
less unmoveable; however, library members can move freely.

The basic collective file model hinges on these features:

* The works manager is aware of two new file attributes,
"library" and "member".

* NSW must allow a user to allocate libraries and members, as
well as ordinary NSW files, to a tool.

* An NSW file with the "library" attribute is always so
represented in the NSW file catalog. It may not have more
than one physical copy. Otherwise, it is treated as a normal
NSW file. There are some file operations to which it is not a
legal argument, and the works manager could do some error
checking; however, actual enforcement of any such reatrictions
will be the file package's responsibility.

* An NSW file acquires the library attribute when it is imported
or delivered into a non-existent NSW file name. The importing
file package reports the attribute to the works manager, who
records it.

* An NSW filename or filespec is recognized to have the member
attribute because of its syntactic form -- it consists of the
qualification of a simple name by a legitimate NSW filename or
filespec, using a unique qualification syntax.

* The NSW member name is the same as the local member name, but
the library name is mapped as for any NSW file.

* A "member" file is represented explicitly in, the NSW file
catalog if and only if there is one or more physical copies
other than the one in the library itself. The works manager
will assume the existence of a member not so represented if
the qualifying file name exists and has the library attribute.
The file package has final responsibility for detecting the
non-existence of a member name.

WM I a

Supporting the IBM File Systew in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 14

* When a member is exported from a library and a NSW copy is
kept, an explicit NSW file catalog entry is made for the
fully-qualified member name, and the new physical copy is
entered into that entry. The presence of the member attribute
implies the existence of the physical copy in the library
itself.

* When there is an entry for a member, it is implicitly linked
to the entry for its library through name similarity. This
link can be found through existing disambiguation mechanisms.

* When a file is delivered into a "member" file, the
corresponding library must already exist, and delivery must be
performed by the file package at that site. The works manager
must thus route the file package call accordingly.
Presumably, all existing file package implementations have
cross-network import capability.

* In general, when a file is delivered into an existing version
of an NSW file, all physical copies of that file must be
deleted. Specifically, when delivery is to a member, if that
member name is explicitly represented in the file catalog, all
its non-PDS physical copies are scheduled for deletion, and
the member catalog entry is deleted. (The PDS copy will be
deleted by the "replace" option on the file package call.)

* All file package calls must be embellished to include member
names where appropriate. It will probably be wise to
communicate the "library" and "member" bits somewhere in such
calls, although the file package may be able to discover this
for itself.

* FP-IMP must be able to report the library attribute in its

reply. It must also have an option that assigns an NSW file
name to an existing file which NSW will share with non-NSW
users.

* When WM-GET is issued against a library name, the file package
will grant access directly to the single NSW copy. The
foreman must ensure read-only access. A request for write
access to an entire library will be denied by the foreman.

* Delivery into an existing library name is not defined.

* A request to delete a member is not a special case, except

that two file catalog entries may be involved.

* A request to rename a member must change only its member name.

This request must be passed to the file package, as member
names are not mapped by the works manager. Thus a new file
package call must be defined.

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 15

* While this model does not provide versions for members, a
library, being an NSW file, will have versions. The works
manager must recognize that delivery into a member does not
change the version number of the library itself.

* For the IBM implementation, a maintenance tool must be
provided to handle at least these chores:

1) Create a PDS.

2) Assign/delete an alias.

3) Analyze a PDS for garbage content.

4) Compress a PDS.

4.3.3.2. EVALUATION

This model addresses more NSW desiderata than those previously
described. IBM tools can be supported, and they can access PDS
libraries or members without change. Non-IBM tools can access PDS
members. A search scope construct is defined, and can be
implemented in non-IBM file packages as well. Such
implementations are not constrained to be similar to PDS's.
Collective operations on libraries are possible. Non-NSW
libraries can be named and used by NSW users. However, the PDS
implementation itself is not embellished; specifically, version
numbers are not provided for members.

This model does require extensive works manager modifications, but
they are all straightforward. Only incremental space increases
need be expected in the file catalog.

PDS garbage collection will have to be handled manually at first.
It is possible that this can be automated later, but it is not
necessary for implementation of the model.

Ai

Supporting the IBM File System in ISW
November 20, 1980 -- Part IV: Libraries

PAGE 16

4.3.4. THE COLLECTIVE FILE MODEL WITH VERSIONS

4.3.4.1. DESCRIPTION

This model is a direct extension of the previous one, and is only
treated separately to avoid excessive descriptive complication.
Additional features include:

* The works manager supports version numbers on simple member
names. Version numbers may still exist for libraries, since
they are NSW files, but they have less meaning now, and their
use should probably be discouraged. It is possible that the
works manager should specifically forbid version numbers for
libraries.

" Member names are now mapped in a special way: the "current"

version of a member has the same NSW name and local name; all
other versions exist in the same library, but under generated
names.

* The names for non-current members are chosen by the local file
package in the same way that it chooses local names for
physical copies of any NSW file. The internal namespace has
an area fenced for this purpose.

A member with no non-PDS physical copies and no non-current

versions is not represented in the NSW file catalog. Non-PDS
physical copies are represented as in the basic collective
file model.

* Non-PDS physical copies of a non-current version are not

permitted. When the current version number changes, any
non-PDS copies are deleted.

* The file catalog entry for a member includes a mapping of
version numbers and generated member names for all non-current
versions. This list can have an NSW-wide maximum length
beyond which old versions are deleted automatically.
Normally, versions are deleted manually.

When both the version number list and the physical copy list
of a member entry in the file catalog becone empty, the entry
is deleted from the catalog.

* When delivery into a PDS is to a now version of an existing

member, the file package must be told this. It must rename
the old version to a generated name, store the new version
under the member nme, and report to the works manager the new
name of the old version. The works manager must record this
name in the version list of the member's entry in the file

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 17

catalog, creating such an entry if necessary.

4.3.4.2. EVALUATION

This model is indeed all things to all people. It fills all the
library-related NSW desiderata, and significantly enhances the IBM

PDS implementation. However, it requires even more code

modification than the basic model.

Techniques for controlling version number growth would have to be

explored before this model were implemented. Otherwise, it could
cause a serious explosion in the file catalog. More serious for

an IBM host system, PDS space could grow at an alarming rate.

Supporting the IBM File System in NSW
November 20, 1980 -- Part IV: Libraries

PAGE 18

4.4. RECOMMENDATIONS

NSW architects should consider all these models, along with hybrids of
them, in designing a library facility for NSW. The feelings of the
authors are these:

* Despite its attractive features, the NSW scope model has

unfortunate deficiencies that make its implementation
unattractive.

* The database model should be implemented at UCLA as soon as
possible, to serve the needs of the immersion project and those of
existing tools like MACRO80.

* MCA should plan an implementation based on the basic collective

file model, and should try to have it ready before large numbers
of users have to learn to use the interim database-model
implementation.

* MCA should specify an extension to its implementation based on the
collective file model with versions; however, implementation of
this extension could be deferred for the time being.

* In any case, the notion of importing non-NSW files for shared use

should be supported by NSW. Access to such files should always be
read-only, end should be to the original, non-NSW copy.
Maintenance should be outside NSW. This notion can be implemented
and supported by individual file packages; however, it is useful
enough to deserve a uniform, NSW-wide specification.

